Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.
Transportation and distribution are the most important elements in the work system for any company, which are of great importance in the success of the chain work. Al-Rabee factory is one of the largest ice cream factories in Iraq and it is considered one of the most productive and diversified factories with products where its products cover most areas of the capital Baghdad, however, it lacks a distribution system based on scientific and mathematical methods to work in the transportation and distribution processes, moreover, these processes need a set of important data that cannot in any way be separated from the reality of fuzziness industrial environment in Iraq, which led to use the fuzzy sets theory to reduce the levels of uncertainty.
... Show MoreAbstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped
... Show MoreIn this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t
... Show MorePredicting the maximum temperature is of great importance because it is related to various aspects of life, starting from people’s lives and their comfort, passing through the medical, industrial, agricultural and commercial fields, as well as concerning global warming and what can result from it. Thus, the historical observations of maximum and minimum air temperature, wind speed and relative humidity were analyzed in this work. In Baghdad, the climatic variables were recorded on clear sky days dawn at 0300 GMT for the period between (2005-2020). Using weather station's variables multiple linear regression equation, their correlation coefficients were calculated to predict the daily maximum air temperature for any day during
... Show MoreIn this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
The superconductor compound (YBa2Cu2.8Zn0.2O7+δ) is prepared by solid state reaction (SSR), Sol-gel (SG) and laser Pulse deposition (PLD) methods. We used the X-ray diffraction technique, which shows an orthorhombic crystalline system for all the samples, and increase in the high-phase (Y-123) and decrease in low-phase and vary in proportion according to the method of preparation with the emergence of some impurities. The behavior of the samples in terms of electrical resistance and critical temperature was investigated all samples showed superconducting behavior. The properties of the dielectric (real dielectric constant, imaginary dielectric constant, loss tangent, alternating electrical conductivity) were s
... Show More