Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.
A load-shedding controller suitable for small to medium size loads is designed and implemented based on preprogrammed priorities and power consumption for individual loads. The main controller decides if a particular load can be switched ON or not according to the amount of available power generation, load consumption and loads priorities. When themaximum allowed power consumption is reached and the user want to deliver power to additional load, the controller will decide if this particular load should be denied receiving power if its priority is low. Otherwise, it can be granted to receive power if its priority is high and in this case lower priority loads are automatically switched OFF in order not to overload the power generation. The
... Show More......
The Iraqi government seeks to overcome the financial crisis by investing and privatizing some projects to achieve sustainable growth. Most of the investment projects in Iraq suffer from many constraints that greatly impact the success of these projects. A survey of the opinions of a group of experts was conducted to identify the most important constraints facing the investment process in Iraq. Then the experts' answers were arranged in a closed questionnaire and distributed to the research sample for which the statistical analysis was conducted. Through it, the most important (17) factors that had the greatest impact on the failure of investment projects in Iraq were reached. One of the main constraints was
... Show MoreNAA Mustafa, University of Sulaimani, Ms. c Thesis, 2010 - Cited by 4
The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show MoreObjective: To evaluate the functional outcomes after extended curettage and reconstruction using a combination of bone graft and bone cement (sandwich). Methodology: In this prospective case series 16 skeletally mature patients with primary giant cell tumor around the knee were included. Patients with previous surgically treated, malignant transformation, degenerative knee changes and those presenting with pathological fracture were excluded. The tumor was excised with bone graft filling space beneath the articular cartilage and a block of gel foam was placed over the cortical surface of picked bone graft. Remaining cavity was filled with polymethylmethacrylate cement (sandwich) with or without internal fixation. The func tional evaluation
... Show MoreThe Ground Penetrating Radar (GPR) is frequently used in pavement engineering
for road pavement inspection. The main objective of this work is to validate
nondestructive, quick and powerful measurements using GPR for assessment of subgrade
and asphalt /concrete conditions. In the present study, two different antennas
(250, 500 MHz) were used. The case studies are presented was carried in University
of Baghdad over about 100m of paved road. After data acquisition and radar grams
collection, they have been processed using RadExplorer V1.4 software
implementing different filters with the most effective ones (time zero adjustment and
DC removal) in addition to other interpretation tool parameters.
The interpretatio
The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show More