Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Borderline-SMOTE + Imbalanced Ratio(IR), Adaptive Synthetic Sampling (ADASYN) +IR) Algorithm, where the work these techniques are generate the synthetic samples for the minority class to achieve balance between minority and majority classes and then calculate the IR between classes of minority and majority. Experimental results show ImprovedSMOTE algorithm outperform the Borderline-SMOTE + IR and ADASYN + IR algorithms because it achieves a high balance between minority and majority classes.
This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat
... Show MoreThe unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreCO2 Gas is considered one of the unfavorable gases and it causes great air pollution. It’s possible to decrease this pollution by injecting gas in the oil reservoirs to provide a good miscibility and to increase the oil recovery factor. MMP was estimated by Peng Robinson equation of state (PR-EOS). South Rumila-63 (SULIAY) is involved for which the miscible displacement by is achievable based on the standard criteria for success EOR processes. A PVT report was available for the reservoir under study. It contains deferential liberation (DL) and constant composition expansion (CCE) tests. PVTi software is one of the (Eclipse V.2010) software’s packages, it has been used to achieve the goal.
... Show MoreThe important parameter used for determining the probable application of miscible displacement is the MMP (minimum miscibility pressure). In enhanced oil recovery, the injection of hydrocarbon gases can be a highly efficient method to improve the productivity of the well especially if miscibility developed through the displacement process. There are a lot of experiments for measuring the value of the miscibility pressure, but they are expensive and take a lot of time, so it's better to use the mathematical equations because of it inexpensive and fast. This study focused on calculating MMP required to inject hydrocarbon gases into two reservoirs namely Sadi and Tanomaa/ East Baghdad field. Modified Peng Robenson Equation of State was
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreSpatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.
A modification to cascaded single-stage distributed amplifier (CSSDA) design by using active inductor is proposed. This modification is shown to render the amplifier suitable for high gain operation in small on-chip area. Microwave office program simulation of the Novel design approach shows that it has performance compatible with the conventional distributed amplifiers but with smaller area. The CSSDA is suitable for optical and satellite communication systems.
ناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show More