Preferred Language
Articles
/
0BdOCJABVTCNdQwC-YIQ
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others in most simulation scenarios according to the integrated mean square error and integrated classification error

Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition
...Show More Authors

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology & Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jun 02 2013
Journal Name
Baghdad Science Journal
Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors
...Show More Authors

In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B

... Show More
Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Comparison of Single and Group Bored Piles Settlement Based on Field Test and Theoretical Methods
...Show More Authors

 Bored piles settlement behavior under vertical loaded is the main factor that affects the design requirements of single or group of piles in soft soils. The estimation of bored pile settlement is a complicated problem because it depends upon many factors which may include ground conditions, validation of bored pile design method through testing and validation of theoretical or numerical prediction of the settlement value. In this study, a prototype single and bored pile group model of arrangement (1*1, 1*2 and 2*2) for total length to diameter ratios (L/D) is 13.33 and clear spacing three times of diameter, subjected to vertical axial loads. The bored piles model used for the test was 2000

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
Iraqi Statisticians Journal
Hypothesis Testing for Non-Normal Multiple Compact Regression Model
...Show More Authors

Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 16 2023
Journal Name
Iraqi Journal For Computer Science And Mathematics
Some Methods to Estimate the Parameters of Generalized Exponential Rayleigh Model by Simulation
...Show More Authors

This paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 02 2024
Journal Name
Iraqi Journal Of Science
Using Sensitivity Analysis in Linear Programming with Practical Physical Applications
...Show More Authors

Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan

... Show More
Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Methods And Objects Of Chemical Analysis
Partial Least Squares Method for the Multicomponent Analysis of Antibacterial Mixture
...Show More Authors

This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal c

... Show More
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jun 10 2010
Journal Name
Iraqi Journal Of Laser
Improvement of Nonlinear Optical Properties for Mixture Laser Dyes Doped PMMA
...Show More Authors

The spectral characteristics and the nonlinear optical properties of the mixed donor (C-480) acceptor (Rh-6G) have been determined. The spectral characteristics are studied by recording their absorption and fluorescence spectra. The nonlinear optical properties were measured by z-scan technique, using Q-switched Nd: YAG laser with 1064 nm wavelength. The results showed that the optimum concentration of acceptor is responsible for increasing the absorption and the emission bandwidth of donor to full range and to 242 nm respectively by the energy transfer process, also the efficiency of the process was increased by increasing the donor and acceptor concentration. The obtained nonlinear properties results of the mixture C-480/ Rh-6G showed

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Diyala Journal For Pure Science
Employing difference technique in some Liu estimators to semiparametric regression model
...Show More Authors

Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use

... Show More
View Publication
Crossref