A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others in most simulation scenarios according to the integrated mean square error and integrated classification error
Efficacy of Varnishes with: Bioactive Glass, Recaldent Technology and Silver Diamine Fluoride in Comparison with Sodium Fluoride on Tooth Surface Micro-hardness (an In Vitro Study)
The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreThe aims of this study are to explore the commercial artifacts in the following three kinds of vegetables oils, Nigella Sativa, Trigonella foenum-graecum Linn,and Zingiber officinale. These oils have been very popular medicinal plants which are commonly used in traditional medicine .These commercial oils have been compared with the extracts of these plants.
The physical properties of extracts and commercial oils of these plants have been stuied. We observed that the refractive index of the plants matches and non-significant, while specific gravity of Nigella Sativa has similar specific gravity in both extracts and commercial oil in contrast with Trigonella foenum Linn,and Zingiber officinale and we found significant difference (P<
This research deals with the role of Qur’anic intents in facilitating and facilitating the understanding of the reader and the seeker of knowledge of the verses of the Holy Qur’an, particularly in the doctrinal investigations (prophecies), and the feature that distinguishes reference to the books of the intentions or the intentional interpretations is that it sings from referring to the books of speakers and delving into their differences in contractual issues and facilitating access To the meanings, purposes and wisdom that the wise street wanted directly from the rulings and orders contained in the verses of the wise Qur’an.
Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended
use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical paramete
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical parame
... Show MoreTitanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show More