In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58° corresponding to (002) and (102) plane of graphite and the broad peaks at 20 43.46° and 73.9° assigned to the (111) and (220) plane of diamond. The FTIR spectrum shows that the increasing in annealing temperature causes increasing in sp3. Scanning electron images show that the DLC nanoparticles have spherical shape with few clusters of particles, and the particles size become small with increasing the temperature, Raman spectroscopy show that the peaks position shifted toward the lower energies when the annealing temperature increase. The optical energy gap (Eg) increased from 2.71to 3.23 eV with increasing the annealing temperature from 400 to 600 °C. It can be concolude that the annealing leads to more diamond-like structure. © 2020 Author(s).
Pure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surfac
... Show MoreThis research aims to analyze the impact of the United States policy of pressure and sanctions on changing Iran's conduct. Since the Islamic Revolution of Iran in 1979, the US has continuously pursued various policies towards Iran, aiming to change the regime by force or isolate it politically and economically. The main research question lies in the following: To what extent does the US pressure policy and its sanctions affect the conduct Iran?. This research discusses that the more there are economic and political alternatives to Iran, the more it will be challenging the US demands. Moreover, the more the US pursues a negotiating policy based on mutual interests, the more Iran will positively respond to American demands.
Fifty patients(24 female and 26 male)with pressure ulcersassociated with different diseasesand attending AL-yarmouk Teaching Hospital in Baghdad were selected in this study. The duration of sample collection was from March to December 2018. All blood samples collected from patients were submitted to a blood culturing technique to examine bacteremia. The results showed that12 blood bacterial isolates were obtained. The isolated bacteria were subjected to Vitek-2, which is an accurate identification technique. The results of the blood culturing technique revealed that 33.3% were Gram negative bacteria, while 66.6% were Gram positive. Diagnosis by Vitek-2 showed that 33.3% wereStaphylococcus spp. , 33.3% were Enterococcus
... Show MorePressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff
... Show MoreBackground: The normal decline in systolic blood pressure during recovery phase of treadmill exercise dose not occur in most patients with coronary artery disease, in others recovery values systolic blood pressure may even exceed the peak exercise value. Objectives: Treadmill exercise test parameters indicating the presence and extent of coronary artery disease have traditionally included such as exercise duration, blood pressure and ST-segment response to exercise. The three –minute systolic blood pressure ratio is another important indicator of presence and significance of coronary artery disease is useful and obtainable measure that can be applied in all patients who are undergoing stress testing for evaluation of suspected is
... Show MoreAbstract: The international community now places significant emphasis on achieving zero carbon emissions, requiring both new researchers and experienced policymakers to prioritise this goal. This article examines the effects of carbon taxes, carbon cap and trade, renewable energy (RE) production and consumption, and economic growth (EG) on carbon emission reduction in the United States, Japan, Canada, and Australia. The study collected secondary data from the World Development Indicators (WDI) secondary source spanning the years 1991 to 2022. The study examines the relationship between variables using the cross-sectionally augmented autoregressive distributed lag (CS-ARDL) approach. The findings indicate that carbon taxes, carbon cap and tr
... Show More
Detection of virulence gene agglutinin-like sequence (ALS) 1 by using molecular technology from clinical samples (
Plasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri
... Show More
