In this work, diamond-like carbon (DLC) thin films were prepared from Cyclohexane. Thin films were deposited on quartz substrate by atmospheric pressure Argon plasma jet system. The plasma jet system was applying high voltage sinusoidal waves of frequency 28 kHz and potential difference of 7.5kV peak to peak across the electrodes. The effect of annealing at 400, 500 and 600 °C under vacuum for two hours on optical properties and structural properties of the DLC thin films were investigated. This effect was clarified by X-ray diffraction (XRD), FTIR, UV-Visible absorption, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The X-ray diffraction patterns for the annealing DLC thin films show two broad peaks at 2θ, 26.62° and 51.58° corresponding to (002) and (102) plane of graphite and the broad peaks at 20 43.46° and 73.9° assigned to the (111) and (220) plane of diamond. The FTIR spectrum shows that the increasing in annealing temperature causes increasing in sp3. Scanning electron images show that the DLC nanoparticles have spherical shape with few clusters of particles, and the particles size become small with increasing the temperature, Raman spectroscopy show that the peaks position shifted toward the lower energies when the annealing temperature increase. The optical energy gap (Eg) increased from 2.71to 3.23 eV with increasing the annealing temperature from 400 to 600 °C. It can be concolude that the annealing leads to more diamond-like structure. © 2020 Author(s).
Coupling reaction of 2-amino benzoic acid with 8-hydroxy quinoline gave bidentate azo ligand. The prepared ligand has been identified by Microelemental Analysis,1HNMR,FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (ZnII,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes have been characterized by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreThe compound 2,2'-(((1H-benzo(d)imidazol-2-yl)methyl)azanediyl)bis(ethan-1-ol) was reacted with benzyl bromide to afford compound (1) which used as row material to prepare a series of compounds through condensation reaction, the starting compound were reacted with tosyl chloride to protect the OH group to afford compound 2, then reacted benzyl bromide to produce compound (2), then the compound (2) treated with three compounds ( 2-mercaptobenzthiazole, 2-mercaptobenimidazol and 2-chloromethyl benzimidazole) to form compounds 3a,b, 4a,b and 5a,b respectively. In the another step the click reaction of compound 2,2'-(((1H-benzo(d)imidazol-2-yl)methyl)azanediyl)bis(ethan-1-ol) with Propargyl bromide produce compound 6 which reacted
... Show MoreThe 3-aminoacetophenone and 4-aminoantipyrine were used as precursors to prepare new six ligands. The three new ligands (L1,L2 and L3) were synthesis by reacting one mole of 3-aminoacetophenone with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thiocyanat in acetone as a solvent, they are:- L1 (AAA) =[N-(3-acetylphenylcarbamothioyl)acetamide] L2 (BAA) =[N-(3-acetylphenylcarbamothioyl)benzamide] L3 (MAA) =[N-(3-acetylphenylcarbamothioyl)-4-methoxy benzamide] Also three new derivatives of 4-aminoantipyrine were synthesis by reacting one mole of 4-aminoantipyrine with one mole of (Acetyl chloride), (benzoyl chloride), (4-methoxybenzoyl chloride) and ammonium thio
... Show MoreIn the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Reaxys Chemistry database information SciVal Topics Metrics Abstract A novel CoO–ZnO nanocomposite was synthesized by the photo irradiation method using a solution of cobalt and zinc complexes and used as a coating applied by electrophoretic deposition (EPD) for corrosion protection of stainless steel (SS) in saline solution. The samples were characterized using powder XRD, scanning electron microscopy (SEM) and electrochemical polarization. It was also found that the coating was still stable after conducting the corrosion test: it contained no cracks and CoO–ZnO nanocomposites clearly appeared on the surface. SEM showed that the significant surface cracking disappeared. XRD confirmed that CoO–ZnO nanocomposites comprised CoO and Zn
... Show More