Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.
This study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show Moreتعد صناعة السمنت في العراق من اقدم الصناعات الحديثة واكثرها تطورا وتقدما ومن اقواها تاثيرا في الاقتصاد القومي. واذ توفر في صناعة السمنت العراقي كافة المستلزمات الناجحة من حيث توفر المواد الاولية والخبرات الفنية والتقنية واسواق ثابتة وراسخة محليا وعالميا فقد كان من المفروض ان يتم التوسع في هذه الصناعة، وان التخطيط لهذه الصناعة امرا ضروريا خاصة وان مادة السمنت هي احدى اهم المواد الرئيسة التي يؤثر توفره
... Show Moret
The research deals with the statement of the importance of unanimous in Islamic Sharia in terms of being the third source of Islamic legislation after the Holy Qur’an and the Sunnah of the Prophet, and the extent of interest of the scholars of interpretation in it, and those who took great interest in mentioning what was agreed upon in every site that necessitated mentioning its issues within, or mentioning an event that has encountered an unanimous, and in various sciences, to extract and extrapolate Sharia rules when these rules are lost in the texts, because it is based on them and derived from them. Among these distinguished scholars is Muhammad bin Jarir al-Tabari. Besides, the research discusses in
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show MoreLost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses
... Show More