Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.
In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
The gravity anomalies of the Jurassic and deep structures were obtained by stripping the gravity effect of Cretaceous and Tertiary formations from the available Bouguer gravity map in central and south Iraq. The gravity effect of the stripped layers was determined depending on the density log or the density density obtained from the sonic log. The density relation with the seismic velocity of Gardner et al (1974) was used to obtain density from sonic logs in case of a lack of density log. The average density of the Cretaceous and Tertiary formation were determined then the density contrast of these formations was obtained. The density contrast and thickness of all stratigraphic formations in the area between the sea level to t
... Show MoreThe regions around the world need to perform their results based on the local geoid. However, each region has different ground topography based on the amount of gravity in this region. Nowadays, the recent global Earth's gravity model of 2008 is successfully used for different purposes in geosciences research. This research presents an overview of the preliminary evaluation results of the new Earth Gravitation Model (EGM08) in the middle of Iraq. For completeness, the evaluation tests were also performed for EGM96 by examining 31 stations distributed over four Iraqi provinces. The national orthometric heights were compared with the GPS /leveling data obtained from these stations. This study illustrated that the GPS /leveling based on EGM
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.
Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu
... Show More