Preferred Language
Articles
/
0BcqP48BVTCNdQwCwGXS
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Design and Implementation ofICT-Based Recycle-Rewarding System for Green Environment
...Show More Authors

This paper proposes a collaborative system called Recycle Rewarding System (RRS), and focuses on the aspect of using information communication technology (ICT) as a tool to promote greening. The idea behind RRS is to encourage recycling collectors by paying them for earning points. In doing so, both the industries and individuals reap the economical benefits of such system. Finally, and more importantly, the system intends to achieve a green environment for the Earth. This paper discusses the design and implementation of the RRS, involves: the architectural design, selection of components, and implementation issues. Five modules are used to construct the system, namely: database, data entry, points collecting and recording, points reward

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
2018 2nd International Conference On Imaging, Signal Processing And Communication (icispc)
Analogy-based Common-Sense Knowledge for Opinion-Target Identification and Aggregation
...Show More Authors

The development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Improvement of electrical features of SnO2 based varistor doped with Al2O3
...Show More Authors

One of the important objectives of the varistor is for a sustainable environment and reduce the pollution resulting from the frequent damage of the electrical devices and power station waste. In present work, the influence of Al2O3 additives on the non –linear electrical features of SnO2 varistors, has been investigated, where SnO2 ceramic powder doped with Al2O3 in three rates (0.005, 0.01, and 0.05), the XRD test improved that SnO2 is the primary phase, while CoCr2O4, and Al2O3 represent the secondary phases. The electrical tests of all prepared samples confirmed that the increasing of Al2O3 rates and sintering temperature improves and increase the electrical features, where the best results obtained at Al2O3 (0.05) and 1000℃, the non

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
CTJ: Input-Output Based Relation Combinatorial Testing Strategy Using Jaya Algorithm
...Show More Authors

Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing

... Show More
View Publication
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Dec 25 2023
Journal Name
Ieee Access
ITor-SDN: Intelligent Tor Networks-Based SDN for Data Forwarding Management
...Show More Authors

Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes del

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Oct 09 2023
Journal Name
2023 Ieee 34th International Symposium On Software Reliability Engineering Workshops (issrew)
Semantics-Based, Automated Preparation of Exploratory Data Analysis for Complex Systems
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Enhanced Chain-Cluster Based Mixed Routing Algorithm for Wireless Sensor Networks
...Show More Authors

Energy efficiency is a significant aspect in designing robust routing protocols for wireless sensor networks (WSNs). A reliable routing protocol has to be energy efficient and adaptive to the network size. To achieve high energy conservation and data aggregation, there are two major techniques, clusters and chains. In clustering technique, sensor networks are often divided into non-overlapping subsets called clusters. In chain technique, sensor nodes will be connected with the closest two neighbors, starting with the farthest node from the base station till the closest node to the base station. Each technique has its own advantages and disadvantages which motivate some researchers to come up with a hybrid routing algorit

... Show More
View Publication Preview PDF