Preferred Language
Articles
/
0BcqP48BVTCNdQwCwGXS
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Simulation based comparison of routing protocols in wireless multihop adhoc networks
...Show More Authors

Routing protocols are responsible for providing reliable communication between the source and destination nodes. The performance of these protocols in the ad hoc network family is influenced by several factors such as mobility model, traffic load, transmission range, and the number of mobile nodes which represents a great issue. Several simulation studies have explored routing protocol with performance parameters, but few relate to various protocols concerning routing and Quality of Service (QoS) metrics. This paper presents a simulation-based comparison of proactive, reactive, and multipath routing protocols in mobile ad hoc networks (MANETs). Specifically, the performance of AODV, DSDV, and AOMDV protocols are evaluated and analyz

... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
2018 9th International Conference On Information And Communication Systems (icics)
An intersection-based segment aware algorithm for geographic routing in VANETs
...Show More Authors

In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Matec Web Of Conferences
Carbon-13 Characterization and Modelling for Temperature Measurement-Based Proton Frequency
...Show More Authors

The physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jul 12 2024
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
A Proposed Blockchain-Based Digital-Identity Management using ERC 725/735
...Show More Authors

In modern technology, the ownership of electronic data is the key to securing their privacy and identity from any trace or interference. Therefore, a new identity management system called Digital Identity Management, implemented throughout recent years, acts as a holder of the identity data to maintain the holder’s privacy and prevent identity theft. Therefore, an overwhelming number of users have two major problems, users who own data and third-party applications will handle it, and users who have no ownership of their data. Maintaining these identities will be a challenge these days. This paper proposes a system that solves the problem using blockchain technology for Digital Identity Management systems. Blockchain is a powerful techniqu

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Chemical Engineering Research And Design
Ternary glycerol-based deep eutectic solvents: Physicochemical properties and enzymatic activity
...Show More Authors

The present study investigates deep eutectic solvents (DESs) as potential media for enzymatic hydrolysis. A series of ternary ammonium and phosphonium-based DESs were prepared at different molar ratios by mixing with aqueous glycerol (85%). The physicochemical properties including surface tension, conductivity, density, and viscosity were measured at a temperature range of 298.15 K – 363.15 K. The eutectic points were highly influenced by the variation of temperature. The eutectic point of the choline chloride: glycerol: water (ratio of 1: 2.55: 2.28) and methyltriphenylphosphonium bromide:glycerol:water (ratio of 1: 4.25: 3.75) is 213.4 K and 255.8 K, respectively. The stability of the lipase enzyme isolated from porcine pancreas (PPL) a

... Show More
View Publication
Crossref (20)
Crossref
Publication Date
Tue Apr 11 2023
Journal Name
Sensors
EEG Signal Complexity Measurements to Enhance BCI-Based Stroke Patients’ Rehabilitation
...Show More Authors

The second leading cause of death and one of the most common causes of disability in the world is stroke. Researchers have found that brain–computer interface (BCI) techniques can result in better stroke patient rehabilitation. This study used the proposed motor imagery (MI) framework to analyze the electroencephalogram (EEG) dataset from eight subjects in order to enhance the MI-based BCI systems for stroke patients. The preprocessing portion of the framework comprises the use of conventional filters and the independent component analysis (ICA) denoising approach. Fractal dimension (FD) and Hurst exponent (Hur) were then calculated as complexity features, and Tsallis entropy (TsEn) and dispersion entropy (DispEn) were assessed as

... Show More
View Publication
Scopus (25)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Airborne Computer System Path-Tracking Based Multi-PID-PSO Controller Design
...Show More Authors

View Publication
Scopus (14)
Crossref (7)
Scopus Crossref
Publication Date
Thu Jun 25 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Synthesis, Characterization and Antibacterial Activity Evaluation of New Indole-Based Derivatives
...Show More Authors

A new series of N-acyl hydrazones (4a-g) derived from indole-3-propionic acid (IPA) were synthesized. These N-acyl hydrazones were prepared by the reaction of 3-(1H-indol-3-yl) propane hydrazide and aldehyde in the existence of glacial acetic acid as a catalyst. 1HNMR and FT-IR analyses were used to identify the synthesized compounds and they were in vitro evaluated as antibacterial agents against six different types of microorganisms by using well diffusion method. All the tested N-acyl hydrazones (4a-g) displayed moderate activity against the Gram-negative E.coli, comparable to that of Amoxicillin. Some of the tested N-acyl hydrazones also exhibited intermediate activity ag

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref