The downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ r
... Show MoreThe downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ rates
... Show MoreThe secure data transmission over internet is achieved using Steganography. It is the art and science of concealing information in unremarkable cover media so as not to arouse an observer’s suspicion. In this paper the color cover image is divided into equally four parts, for each part select one channel from each part( Red, or Green, or Blue), choosing one of these channel depending on the high color ratio in that part. The chosen part is decomposing into four parts {LL, HL, LH, HH} by using discrete wavelet transform. The hiding image is divided into four part n*n then apply DCT on each part. Finally the four DCT coefficient parts embedding in four high frequency sub-bands {HH} in
... Show More<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreThe technique of integrate complimentary details from two or more input images is known as image fusion. The fusion image is more informational and will be complete more than any of the original input images. This paper Illustrates implementation and evaluation of fusion techniques used on the Satellite images a high-resolution Panchromatic (Pan) and Multispectral (MS). A new algorithm is proposed to fuse a Pan and MS of the lowresolution images based on combining IHS and Haar wavelet transform.Firstly, this paper clarifies the classical fusion by using IHS transform and Haar wavelet transform individually. Secondly proposition new strategy of combining the two methods. Performance of the proposed method is evalua
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that