Preferred Language
Articles
/
0BbCuosBVTCNdQwCz9hm
Geographically weighted regression model for physical, social, and economic factors affecting the COVID-19 pandemic spreading
...Show More Authors
Abstract<p>This study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appear in it. So, there will not be a single treatment for all areas with different urban characteristics, which sometimes helps not to stop social and economic life due to the imposition of a comprehensive ban on movement and activities. Therefore, there will be other supportive policies other than the ban, depending on the urban indicators for each region, such as reducing external movement from it or relying on preventing public activities only.</p>
Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 24 2022
Journal Name
Journal Of The Faculty Of Medicine Baghdad
The The predicting factors of clinical outcomes in patients with COVID-19 in the Kingdom of Saudi Arabia [KSA]: A multi-center cohort study
...Show More Authors

Background: On March 2020, the first case of coronavirus disease-19 was registered in the Kingdom of Saudi Arabia and subsequently the first mortality case. The predicting factors for patients' outcomes are essential to triage patients with COVID-19. This may provide low-cost facilities that help in the fight against the existing global pandemic.   

Objectives: This study aimed to predict hospitalization and death outcomes of COVID-19 patients using the simplest facilities.

Method: The electronic medical records of 280 COVID-19 patients between March 2020 and May 2021 were retrieved from a multi-centre of healthcare facilities across Kingdom of Saudi Arabian cites. All de

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 16 2021
Journal Name
International Journal Of Clinical Practice
An overview of post‐COVID‐19 complications
...Show More Authors

View Publication
Scopus (4)
Crossref (6)
Scopus Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Modeling Extreme COVID-19 Data in Iraq
...Show More Authors

     This paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Nov 16 2021
Journal Name
Journal Of Clinical Laboratory Analysis
Hematological changes associated with COVID‐19 infection
...Show More Authors
Abstract<sec><title>Background

The unresolved COVID‐19 pandemic considerably impacts the health services in Iraq and worldwide. Consecutive waves of mutated virus increased virus spread and further constrained health systems. Although molecular identification of the virus by polymerase chain reaction is the only recommended method in diagnosing COVID‐19 infection, radiological, biochemical, and hematological studies are substantially important in risk stratification, patient follow‐up, and outcome prediction.

Aim

This narrative review summarized the hematological changes including the blood indices, coagulative indicator

... Show More
View Publication
Scopus (35)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
2nd International Conference Of Mathematics, Applied Sciences, Information And Communication Technology
Spatial and temporal analysis of the spread of Covid-19 in Iraq
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural Networks
...Show More Authors

     The coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray
...Show More Authors

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (12)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 09 2014
Journal Name
Iosr Journal Of Mathematics (iosr-jm)
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Sat Dec 21 2024
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.
...Show More Authors

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

View Publication Preview PDF
Crossref