This study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appear in it. So, there will not be a single treatment for all areas with different urban characteristics, which sometimes helps not to stop social and economic life due to the imposition of a comprehensive ban on movement and activities. Therefore, there will be other supportive policies other than the ban, depending on the urban indicators for each region, such as reducing external movement from it or relying on preventing public activities only.
In this study a concentration of uranium was measured for twenty two samples of soil distributed in many regions (algolan, almoalmeen, alaskary and nasal streets) from Falluja Cityin AL-Anbar Governorate in addition to other region (alandlos street) as a back ground on the Falluja City that there is no military operations happened on it. The uranium concentrations in soil samples measured by using fission tracks registration in (PM-355) track detector that caused by the bombardment of (U) with thermal neutrons from (241Am-Be) neutron source that has flux of (5×103n cm-2 s-1). The concentrations values were calculated by a comparison with standard samples. The results shows that the uranium concentrations algolan street varies from(1.
... Show MoreThree-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
Background: Liver metastasis significantly complicates cancer prognosis, yet easily accessible markers for its early detection and monitoring remain crucial. This study aimed to comprehensively evaluate key hematological parameters as potential indicators for liver metastasis in Iraqi patients. Methods: We conducted a cross-sectional study comparing hematological profiles between 90 patients (presumably with liver metastasis) and 30 healthy controls. White Blood Cell (WBC) count, Lymphocyte percentage, Neutrophil percentage, and Neutrophil-to-Lymphocyte Ratio (NLR) were analyzed. Given non-normal data distributions (confirmed by the Shapiro-Wilk test), group comparisons were performed using the non-parametric Mann-Whitney U test.
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit