A sensitive, accurate, and affordable colorimetric method was developed for assaying prednisolone (PRZ) in various medicinal forms. The procedure involves the oxidation of PRZ by ferric ions, followed by complexation of the resulting ferrous ions with ferricyanide to produce a greenish-blue product. Common complexation conditions were thoroughly investigated. The mole ratio of FeCl₃·6H₂O to K₃Fe(CN)₆ was 8:1. The proposed mechanism of complexation was suggested and considered. Various parameters were optimized, including the reduction of the colorimetric reaction temperature to 50°C and the duration of heating and analysis to 20-30 minutes. The calibration curve was linear over the range of 1-60 µg/mL. The limit of detection (LOD
... Show MoreThe basic concept of diversity; where two or more inputs at the receiver are used to get uncorrelated signals. The aim of this paper is an attempt to compare some possible combinations of diversity reception and MLSE detection techniques. Various diversity combining techniques can be distinguished: Equal Gain Combining (EGC), Maximal Ratio Combining (MRC), Selection Combining and Selection Switching Combining (SS).The simulation results shows that the MRC give better performance than the other types of combining (about 1 dB compare with EGC and 2.5~3 dB compare with selection and selection switching combining).
In this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.
The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which tr
Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .