Density functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were calculated. Based on previous researches, it is understood that the adsorption of dipeptides on the aforementioned moieties has a chemical nature. The protonation of configuration leads to an increase in the amount of energy of adsorption on the surface of metal among the inhibitors. Theoretically speaking, it is more likely for peptides to adsorb on the surface of iron, and this fact reveals that these moieties are highly effective in terms of inhibitive applications. According to the obtained findings, small peptides can be used as favorable “green” corrosion inhibitors.
In this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreAntiviral medications may be the best choices for COVID-19 treatment until particular therapeutic treatments become available. Tamiflu (oseltamivir) is a neuraminidase inhibitor licensed for the management and defense against influenza types A and B. Oseltamivir-based medication combinations are currently being used to treat COVID-19 patients who also have the new coronavirus 1 SARS-CoV-2. 1 Oseltamivir administration was related with a less time spent in the hospital, quicker recovery 1 and discharge, and a decreased mortality rate. Docking is a modern computational method for identifying a hit molecule by assessing the binding ability of molecular medicines within the binding target pocket. In this work, we chose 21 ligand compounds that
... Show Morein this paper the notion of threshold relations by using resemblance relation are introduced to get a similarity relation from a resemnblance relation R
This study aims at discussing the theoretical and applicable parts of the reading comprehension to help the teachers of Arabic. This study shows that the students have a general weakness in reading comprehension. The researcher handles issues related to reading comprehension and to practicing exercises of the training strategies such as: dialogue, discussion, discussion questions, continuous training, group works. Such skills will be used to analyze a poem to see the level of the students’ reading comprehension and to develop the students’ skills. The study answers two questions:
1- What is the reading comprehension from a theoretical perspective?
2- How can we develop the skills of the reading comprehension from the practical
The purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show Moreتم في هذه الدراسة ، تزيين رقائق أكسيد الجرافين (GO) بجسيمات كوبلتيت النيكل النانوية NiCo2O4(NC) عن طريق الترسيب في الموقع ، وتم استخدام المتراكب المحضر (NC: GO) كسطح ماز لإزالة صبغة الميثيل الخضراء ( MG) من المحاليل المائية. تم التحقق من التغطية الناجحة لأوكسيد الجرافين بجزيئات كوبلتيت النيكل النانوية (NC) باستخدام دراسات FT-IR وحيود الأشعة السينية (XRD). كانت أحجام الجسيم
... Show More