Bendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio of clinker existence being lower in the Portland limestone cement
Self- curing is the potential of lightweight aggregate to absorption great amount of water thru mixing which prominently can moves to the paste during hydration process. Self- curing empowers a water to be distributes more evenly act out the cross section. Whereas, the external curing water is only able to penetrate several millimetres into concrete with low water cement ratio. Brick dust accumulates in the demolish site creates serious environmental contamination. This study investigates the effect of brick dust recovered from construction site on the Properties of mortar cured in three curing conditions. Mortar in this study produced using BD as cement additive with (2, 4, 6, and 8) % by weight of cement. BD was used a
... Show MoreBackground: Crown preparation of vital teeth involve the removal of a sound tooth structure, and when enamel removed this lead to exposed dentin with an increase in the number of open dentinal tubules also the diameter of dentinal tubules will increase, furthermore lead to increase movement of fluids inside the tubules all that causes post preparation sensitivity. The aim of this study is to evaluate the effect of desensitizing by Er:Cr:YSGG laser on shear bond strength of prepared tooth and resin cement. Materials and methods: Thirty sound maxillary premolars, grouped into three groups(n=10). Group A is the control group, group B irradiated by Er:Cr:YSGG laser with (0.25 W, 20 Hz, 1
... Show MoreActivated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec
... Show MoreThe use of composite materials has vastly increased in recent years. Great interest is therefore developed in the damage detection of composites using non- destructive test methods. Several approaches have been applied to obtain information about the existence and location of the faults. This paper used the vibration response of a composite plate to detect and localize delamination defect based on the modal analysis. Experiments are conducted to validate the developed model. A two-dimensional finite element model for multi-layered composites with internal delamination is established. FEM program are built for plates under different boundary conditions. Natural frequencies and modal displacements of the intact and damaged
... Show MoreA cermet (ceramic-metal) composite have been prepared from alumina (γ-Al2O3) reinforced with aluminum (Al) for the concentrations of (0, 10, 20, 30, 40, & 50) wt. %Al. The cermet was formed by single axial pressing, sintered in vacuum atmosphere. Compaction behaviors were studied in solid state sintering at sintering temperatures (400, 450, & 550) °C, sintering times (2, 4, & 6) hrs., and forming pressures (5, 10, 15) MPa, also in liquid phase sintering at (800 °C). The cermet was characterized by x-ray diffraction (XRD) and by scanning electron microscope (SEM), also physical and mechanical properties have been studied. SEM results showed the Al flowing inside the ceramic body due to uniform distribution of Al particles a
... Show MoreIn this paper, the static analysis for finding the best location of boxes inside the composite wing-box structure has been performed. A software ANSYS (ver.11) was used to analyses the Aluminum wing to find the maximum stresses reached in. These results are used as a base for the composite wingbox to find the numbers of layers and location of the box beam and its dimensions so that the composite wingbox may carry the same loading conditions in the Aluminum wing. Analysis showed that a composite wingbox having two boxes is better than the single or triple boxes wing based on stress to weight ratio. Mass saving of (40%) had been achieved when composite wing-box is used instead of Aluminum wing.
This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.
Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.
The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val
... Show MoreBuckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda
... Show More