The design of coordination compounds with solvent-responsive optical properties remains a central challenge in molecular photonics. Here, we describe the synthesis and full characterisation of a symmetrical tetradentate diamine ligand, 3,3′-((1,2-phenylenebis(azanediyl))- bis(methanylylidene))bis(pentane-2,4-dione) (H₂L), and its neutral square-planar complexes [M(L)] (M(II) = Co, Ni, Cu). The Cu(II) complex crystallised as [Cu(L)]⋅0.5 (pyrazine), adopting a nearly square-planar geometry (τ₄ = 0.06) in the solid state, as confirmed by single-crystal X-ray diffraction. In DMSO solution, UV–Vis spectra revealed reversible axial coordination of two solvent molecules, driving a transformation to a distorted octahedral geometry. Structural assignments were supported by FT-IR, UV–Vis, NMR, ESI-MS, conductivity, and magnetic susceptibility measurements. Density functional theory (DFT) calculations (B3LYP/6-311 + G(d,p) for H₂L; LANL2DZ for the complexes) reproduced the experimental geometries, mapped frontier orbital distributions, and yielded global reactivity descriptors. Among the complexes, [Cu(L)] displayed the narrowest HOMO–LUMO gap (ΔE = 3.911 eV), the highest polarisability (α = 305.3 a.u.), and an exceptionally large second-order hyperpolarisability (β = 2.20 × 104 a.u.), surpassing benchmark compounds such as urea, p-nitroaniline (pNA), and 2-methyl-4-nitroaniline (MNA) by more than 50 %. These results highlight diamine-derived N₂O₂ frameworks as promising candidates for solvent-responsive nonlinear optical (NLO) materials, combining hydrolytic stability with geometry switching and enhanced second-order optical performance. Importantly, X-ray data reveal that coordination to Cu(II) induces electron redistribution, imparting imine-like character to the nitrogen donors despite the diamine nature of the free ligand. This interplay highlights both the novelty and the performance advantage of the present system within the second-order NLO domain of Cu(II) complexes.
In this work, the superconducting CuBa2LaCa2Cu4O11+δ compound was prepared by citrate precursor method and the electrical and structural properties were studied. The electrical resistivity has been measured using four probe test to find the critical temperature Tc(offset) and Tc(onset). It was found that Tc (offset) at zero resistivity has 101 K and Tc (onset) has 116 K. The X-ray diffraction (XRD) analysis exhibited that a prepared compound has a tetragonal structure. The crystal size and microscopic strain due to lattice deformation of CuBa2LaCa2Cu4O11+δ were estimated by four methods, namely Scherer(S), Halder-Wagner(H-W), size-strain plot (SSP) and Williamson-Hall, (W-H) methods. Results of crystal sizes obtained by these meth
... Show MoreThe electrical properties of CdO/porous Si/c-Si heterojunction prepared by deposition of CdO layer on porous silicon synthesized by electrochemical etching were studied. The structural, optical, and electrical properties of CdO (50:50) thin film prepared by rapid thermal oxidation were examined. X-ray diffraction (XRD) results confirmed formation of nanostructured silicon layer the full width half maximum (FWHM) was increased after etching. The dark J-V characteristics of the heterojunction showed strong dependence on etching current density and etching time. The ideality factor and saturation current of the heterojunction were calculated from J-V under forward bias. C-V measurements confirmed that the prepared heterojunctions are abrupt
... Show MoreIn this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temper
Polyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the form
The dental amalgam of radioactive materials in the restoration of teeth because of its readily adaptable to existing materials in the oral cavity in addition to mechanical properties such as hardness mechanical resistance Alndgat and others in this study were prepared Almlagm used Guy dental restoration of silver alloy tin plus some elements to improve the characteristicsmechanical such as copper, zinc or indium in addition to mercury
Strategic Cost Management Tools Under Technological Development and Change in Customer Tastes Critical Studies
A theoretical study including the effects of the fusion characteristics parameters on the fundamental fusion rate for the BEC state in D-D fusion reaction is deal with varieties physical parameters such as the fuels density, fuel temperature and the astrophysics S-factor are processed to bring an approximately a comparable results to agree with the others previously studies.
A quadruped (four-legged) robot locomotion has the potential ability for using in different applications such as walking over soft and rough terrains and to grantee the mobility and flexibility. In general, quadruped robots have three main periodic gaits: creeping gait, running gait and galloping gait. The main problem of the quadruped robot during walking is the needing to be statically stable for slow gaits such as creeping gait. The statically stable walking as a condition depends on the stability margins that calculated particularly for this gait. In this paper, the creeping gait sequence analysis of each leg step during the swing and fixed phases has been carried out. The calculation of the minimum stability margins depends up
... Show More