Preferred Language
Articles
/
-xibRpcBVTCNdQwCg5bT
Optimizing Gas Lift for Improved Oil Recovery in a Middle East Field: A Genetic Algorithm Approach
...Show More Authors

This paper presents a study of the application of gas lift (GL) to improve oil production in a Middle East field. The field has been experiencing a rapid decline in production due to a drop in reservoir pressure. GL is a widely used artificial lift technique that can be used to increase oil production by reducing the hydrostatic pressure in the wellbore. The study used a full field model to simulate the effects of GL on production. The model was run under different production scenarios, including different water cut and reservoir pressure values. The results showed that GL can significantly increase oil production under all scenarios. The study also found that most wells in the field will soon be closed due to high water cuts. However, the application of GL can keep these wells economically viable. The economic evaluation of the study showed that the optimum GL design is feasible and can significantly improve oil production. This suggests that GL is a promising technology for improving oil production in fields that are experiencing a decline in production. The study also provides a new approach to GL optimization using a genetic algorithm, which can be used to find the optimal GL design for a given field.

View Publication
Publication Date
Wed Jul 22 2020
Journal Name
University Of Baghdad
Feasibility of Water Sink-Based Gas Flooding to Enhance Oil Recovery in North Rumaila Oil Field
...Show More Authors

Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Water Injection for Oil Recovery in Mishrif Formation for Amarah Oil Field
...Show More Authors

The water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Jan 02 2017
Journal Name
European Journal Of Scientific Research
Fast approach for arabic text encryption using genetic algorithm
...Show More Authors

As s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res

... Show More
Publication Date
Sun Dec 22 2024
Journal Name
Journal Of Petroleum Research And Studies
Optimizing Well Placement with Genetic Algorithms: A Case Study
...Show More Authors

Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty

... Show More
View Publication
Crossref
Publication Date
Mon Nov 07 2016
Journal Name
Abu Dhabi International Petroleum Exhibition & Conference
Developed Material Balance Approach for Estimating Gas Initially in Place and Ultimate Recovery for Tight Gas Reservoirs
...Show More Authors
Abstract<p>The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur</p> ... Show More
View Publication
Scopus (10)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing
...Show More Authors

Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2012
Journal Name
International Journal Of Cyber-security And Digital Forensics (ijcsdf)
Genetic Algorithm Approach for Risk Reduction of Information Security
...Show More Authors

Nowadays, information systems constitute a crucial part of organizations; by losing security, these organizations will lose plenty of competitive advantages as well. The core point of information security (InfoSecu) is risk management. There are a great deal of research works and standards in security risk management (ISRM) including NIST 800-30 and ISO/IEC 27005. However, only few works of research focus on InfoSecu risk reduction, while the standards explain general principles and guidelines. They do not provide any implementation details regarding ISRM; as such reducing the InfoSecu risks in uncertain environments is painstaking. Thus, this paper applied a genetic algorithm (GA) for InfoSecu risk reduction in uncertainty. Finally, the ef

... Show More
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model
...Show More Authors

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Multiphase Flow Behavior Prediction and Optimal Correlation Selection for Vertical Lift Performance in Faihaa Oil Field, Iraq
...Show More Authors

In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref