The Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition System contains many stages, including image acquisition, pre-processing of images, and character recognition. This review aims to examine the earlier studies on transcription and Braille cell recognition by other scholars and the comparative results and detection techniques among them. This review will look at previous work done by other researchers on Braille cell recognition and transcription, comparing previous works in this study, and will be useful and illuminating for Braille Recognition System researchers, especially newcomers.
This search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreIn this paper the method of singular value decomposition is used to estimate the ridge parameter of ridge regression estimator which is an alternative to ordinary least squares estimator when the general linear regression model suffer from near multicollinearity.
Visual media is a better way to deliver the information than the old way of "reading". For that reason with the wide propagation of multimedia websites, there are large video library’s archives, which came to be a main resource for humans. This research puts its eyes on the existing development in applying classical phrase search methods to a linked vocal transcript and after that it retrieves the video, this an easier way to search any visual media. This system has been implemented using JSP and Java language for searching the speech in the videos
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Liquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreVoting is an important procedure in democratic societies in different countries, including Iraq. Electronic voting (E-voting) is becoming more prevalent due to reducing administrative costs and burdens. E-voting systems have many restrictions that affect the electoral process. For example, fraud, tampering with ballot boxes, taking many hours to announce results, and the difficulty of reaching polling stations. Over the last decade, blockchain and smart contract technologies have gained widespread adoption in various sectors, such as cryptocurrencies, finance, banking, and most notably in e-voting systems. If utilized properly, the developer demonstrates properties that are promising for their properties, such as security, privacy, trans
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreThe process of employing modern technology in a consistent manner is what the researcher is interested in, and the psychological role of the sound effect in enhancing psychopathic representations in cinematic characters, which had a wide resonance in the field of cinematic films, and after the predominance of digital technology in the production of contemporary films, the sound effect has a higher efficiency And a good level of advanced aesthetic and dramatic expression in film employment, so many directors resorted to this type of films by using various new and advanced techniques and technological programs in their industry, since the traditional construction does not achieve the dazzling that the viewer desires.
Accordingly, th
... Show More