The Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition System contains many stages, including image acquisition, pre-processing of images, and character recognition. This review aims to examine the earlier studies on transcription and Braille cell recognition by other scholars and the comparative results and detection techniques among them. This review will look at previous work done by other researchers on Braille cell recognition and transcription, comparing previous works in this study, and will be useful and illuminating for Braille Recognition System researchers, especially newcomers.
This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreThe deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreIn this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreImage quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat
... Show MoreThis work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show More