In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that A≤D and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M
... Show MoreThe main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).
In this note we consider a generalization of the notion of a purely extending
modules, defined using y– closed submodules.
We show that a ring R is purely y – extending if and only if every cyclic nonsingular
R – module is flat. In particular every nonsingular purely y extending ring is
principal flat.
In this article, we study the notion of closed Rickart modules. A right R-module M is said to be closed Rickart if, for each , is a closed submodule of M. Closed Rickart modules is a proper generalization of Rickart modules. Many properties of closed Rickart modules are investigated. Also, we provide some characterizations of closed Rickart modules. A necessary and sufficient condition is provided to ensure that this property is preserved under direct sums. Several connections between closed Rickart modules and other classes of modules are given. It is shown that every closed Rickart module is -nonsingular module. Examples which delineate this concept and some results are provided.
This paper is concerned with the study of the T-norms and the quantum logic functions on BL-algebra, respectively, along with their association with the classical probability space. The proposed constructions depend on demonstrating each type of the T-norms with respect to the basic probability of binary operation. On the other hand, we showed each quantum logic function with respect to some binary operations in probability space, such as intersection, union, and symmetric difference. Finally, we demonstrated the main results that explain the relationships among the T-norms and quantum logic functions. In order to show those relations and their related properties, different examples were built.