Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the limitation of traditional AVs, we proposed a virus detection system based on extracting Application Program Interface (API) calls from virus behaviors. The proposed research uses static analysis of behavior-based detection mechanism without executing of software to detect viruses at user mod by using Markov Chain.
CdO films were deposited on substrates from glass, Silicon and Porous silicon by thermal chemical spray pyrolysis technique with different thicknesses (130 and 438.46) nm. Measurements of X-ray diffraction of CdO thin film proved that the structure of the Polycrystalline is cubic lattice, and its crystallite size is located within nano scale range where the perfect orientation is (200). The results show that the surface’s roughness and the root mean square increased with increasing the thickness of prepared films. The UV-Visible measurements show that the CdO films with different thicknesses possess an allowed direct transition with band gap (4) eV. AFM measurement revealed that the silicon porosity located in nano range. Cadmium oxide f
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreHerpes simplex virus (HSV) is a common human pathogen that causes severe infections in newborns and immunocompromised patients. Conjunctivitis or corneal epithelial keratitis is caused by HSV type 1 all over the world and at all times of the year. The present study was aimed at detecting HSV in patients suffering from conjunctivitis. One hundred and ten (110) clinical samples (90 patients and 20 controls, both males and females) of eye conjunctiva swabs were collected from patients of different ages. The samples were analyzed using qPCR and ELISA techniques. The qPCR results revealed that HSV was present in 47 (52.2%) of the 90 patients who were infected. Of these patients, 25 (48.0%) were males and 22 (57.8%) were females, indicati
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
The main problem established by a discovery of a thyroid nodule is to discriminate between a benign and malignant lesion. Differential diagnosis between follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. A developing number of some encouraging IHC markers for the differential diagnosis of thyroid lesions have emerged, including, Hector Battifora mesothelial (HBME-1) and galectin-3 (Gal-3). There was significant positive correlation between Galectin-3 and HBME-1 in follicular carcinoma and follicular variant of papillary carcinoma (r= 0.380, P= 0.041) and (r= 0.315, P=0.047) respectively. There was no significant correlation between
... Show MoreThis study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnet
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreChest X-rays have long been used to diagnose pneumothorax. In trauma patients, chest ultrasonography combined with chest CT may be a safer, faster, and more accurate approach. This could lead to better and quicker management of traumatic pneumothorax, as well as enhanced patient safety and clinical results.
The purpose of this study was to assess the efficacy and utility of bedside US chest in identifying traumatic pneumothorax and also its capacity to estimate the extent of the lesion in comparison to the gold standard modality chest computed tomography.