Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were investigated. Results: There were significant increases in microroughness, nanoroughness, surface area ratio, and wettability after laser texturing with no change in the elemental composition. The best results were obtained by using 400 µs laser pulse duration with a dot separation distance of 0.2 mm and a 60° staggered dots pattern. Conclusions: Laser surface texturing of PEEK implant material by fractional CO2 laser is an easy and fast method of introducing patterned topographical features with no need for additional devices. With further investigations, this method of PEEK modification might have the potential to be used in the implant field.
A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show MoreBackground: Bacteriocin is a peptidic toxin has many advantages to bacteria in their ecological niche and has strong antibacterial activity. Objective: The aim of this study was to evaluation of bacteriocin using Streptococcus sanguinis isolated from human dental caries.
Subjects and Methods: Thirty five streptococcus isolates were diagnosed and tested for their production of bacteriocin, and then the optimal conditions for production of bacteriocin were determined. After that, the purification of bacteriocin was made partially by ammonium sulfate at 95% saturation levels, followed by and gel filtration chromatography
... Show MoreNet pay is one of the most important parameters used in determining initial oil in place of a reservoir. It can be delineated through the using of limiting values of the petrophysical properties of the reservoir. Those limiting values are named as the cutoff. This paper provides an insight into the application of regression line method in estimating porosity, clay volume and water saturation cutoff values in Mishrif reservoir/ Missan oil fields. The study included 29 wells distributed in seven oilfields of Halfaya, Buzurgan, Dujaila, Noor, Fauqi, Amara and Kumait.
This study is carried out by applying two types of linear regressions: Least square and Reduce Major Axis Regression.
The Mishrif formation was
... Show MoreThe current research aims at testing the relationship between organizational immunity and preventing administrative and financial corruption (AFC) in Iraq. The Statistical Package for the Social Sciences program (R& SPSS) was used to analyse the associated questionnaire data. The research problem has examined how to activate the functions of the organizational immune system to enable it to face organizational risks, attempt to prevent administrative and financial corruption, and access the mechanisms by which to develop organizational immunity. A sample of 161 individuals was taken who worked in the Directorate General of Education, Karbala. Also, it was concluded to a lack of memory function for organizational immunity. In a
... Show MoreThe degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More