Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were investigated. Results: There were significant increases in microroughness, nanoroughness, surface area ratio, and wettability after laser texturing with no change in the elemental composition. The best results were obtained by using 400 µs laser pulse duration with a dot separation distance of 0.2 mm and a 60° staggered dots pattern. Conclusions: Laser surface texturing of PEEK implant material by fractional CO2 laser is an easy and fast method of introducing patterned topographical features with no need for additional devices. With further investigations, this method of PEEK modification might have the potential to be used in the implant field.
The enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%. The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran
... Show MoreBackground: Implant stability is considered one of the most important factors affecting healing and successful osseointegration of dental implants. The aims of the study were to measure the implant stability quotient (ISQ) values during the healing period and to determine the factors that affect implant stability. Materials and methods: Thirty patients enrolled in the study (17 female, 13 male). They received 44 Implantium® Dental Implants located as the following: 22 implants in maxillary jaw, 22 implants in mandibular jaw from them 17 implants in anterior segment and 27 in posterior segment. The bone density determined using interactive CT scan and classified according to the Misch bone density classification (29 implants in (D3), 15 i
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreEight patients (3 male and 5 female) were treated in this study by Endovenous Laser Ablation (EVLA); Mathematical models are proposed to estimate the applied laser power and to assess the recovery period. The estimations of the applied laser power and recovery period in these models will be depended mainly on the diameter of the incompetent vein. In addition, Excel Program was utilized to find the proposed models. A 1470 nm diode laser up to 15W continuous power (CW) was used in the treatment of venous ulcers by EVLA procedure. Following up by duplex ultrasound was started in the 1st week after the first session until the vein is completely closed. The present study concluded that the relationship both between
... Show MoreThe fractional free volume (Fh) in polystyrene (PS) as a function of neutron -irradiation dose has been measured, using positron annihilation lifetime (PAL) method. The results show that Fh values decreased with increasing n-irradiation dose up to a total dose of 501.03× 10-2 Gy.
A percentage reduction of 2.14 in Fh values is noticed after the initial n-dose corresponding to a percentage reduction in the free volume equal to 42.14/Gy.
The total n-dose induces a percentage reduction of 7.26, corresponding to a percentage reduction of 1.45/Gy. These results indicate that cross -linking is the predominant process induced by n-irradiation.
The results suggest that n-irradiation induces structure changes in PS, causing cross-linking
Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.
In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien
... Show More