Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were investigated. Results: There were significant increases in microroughness, nanoroughness, surface area ratio, and wettability after laser texturing with no change in the elemental composition. The best results were obtained by using 400 µs laser pulse duration with a dot separation distance of 0.2 mm and a 60° staggered dots pattern. Conclusions: Laser surface texturing of PEEK implant material by fractional CO2 laser is an easy and fast method of introducing patterned topographical features with no need for additional devices. With further investigations, this method of PEEK modification might have the potential to be used in the implant field.
Some types of the fungus Aspergillus were isolated from some hospitals in the city of Baghdad (Imam Ali Hospital and Sadr General Hospital). The samples were taken by Transport media at a rate of three replicates of each place isolated from samples from different places within the hospital (waste, baths, the sick beds, corridors and room floors) for the purpose of isolating and diagnosing the fungus on the Czapeck Dox Agar media. It was noticed that the spread rate of fungus Aspergillus was 70% compared to other species that have emerged during the isolation process of the Sabouraud's Dextrose Agar media. The species A.niger (56.25%) was considered the most common type of fungus visible during the isolation process of the Imam Ali Hospit
... Show MoreAbstract
The curriculum is amodern science which reflects the social philosophy and
what it needs . It searches for amothod that limits the knowledge that the
indiridual gets in the society and the sorts of the culture that suits the enrironment
in which they live. It also clears for them their history and their great in heritance.
It has a great in flunce in their mental growth ,and it teacher the students new
roles in the thin king ,and training then on what they have learned . According to
there points the problem concentrats on the mostimpotant difficulties which facer
thestudents in studing Arabic langnage text-books
In spite of the great care that the text taker but it is full of subjects and studies
w
Transport layer is responsible for delivering data to the appropriate application process on the host computers. The two most popular transport layer protocols are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is considered one of the most important protocols in the Internet. UDP is a minimal message-oriented Transport Layer protocol. In this paper we have compared the performance of TCP and UDP on the wired network. Network Simulator (NS2) has been used for performance Comparison since it is preferred by the networking research community. Constant bit rate (CBR) traffic used for both TCP and UDP protocols.
Systems on Chips (SoCs) architecture complexity is result of integrating a large numbers of cores in a single chip. The approaches should address the systems particular challenges such as reliability, performance, and power constraints. Monitoring became a necessary part for testing, debugging and performance evaluations of SoCs at run time, as On-chip monitoring is employed to provide environmental information, such as temperature, voltage, and error data. Real-time system validation is done by exploiting the monitoring to determine the proper operation of a system within the designed parameters. The paper explains the common monitoring operations in SoCs, showing the functionality of thermal, voltage and soft error monitors. The different
... Show MoreThe aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.
The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.
In this work, we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied; j = , δ, α, pre, b, β
Volumetric chemical adsorption was done in a volumetric apparatus using hydrogen gas at room temperature on eleven platinum catalyst, commercial catalysts (RG-412,RG-402 ,RG-432, RG-451, RG-482, and PS-10) and prepared platinum catalysts with 0.1, 0.2 , 0.45 , and 0.55% by weight of Pt supported with Y-alumina. The results show that the metal crystallite area increases with increasing platinum content. The dispersion and particle size of metal crystallite located between 48.2-96.1% and 3.85-12.72 nm, respectively. For bimetallic catalysts, the hydrogen intake decrease in the following order : Re < Sn < Ir.
This is a survey study that presents recent researches concerning factional controllers. It presents several types of fractional order controllers, which are extensions to their integer order counterparts. The fractional order PID controller has a dominant importance, so thirty-one paper are presented for this controller. The remaining types of controllers are presented according to the number of papers that handle them; they are fractional order sliding mode controller (nine papers), fuzzy fractional order sliding mode controller (five papers), fractional order lag-lead compensator (three papers), fractional order state feedback controller (three papers), fractional order fuzzy logic controller (three papers). Finally, several conclusions
... Show More