There is of great importance to know the values of the optical constants of materials due to their relationship with the optical properties and then with their practical applications. For this reason, it was proposed to study the optical constants of amorphous silicon nanostructures (quantum well, quantum wire, and quantum dot) because of their importance in the world of optical applications. In this study, it was adopted the Herve and Vandamme (HV) model of the refractive index because it was found that this model has very good optical properties for almost all semiconductors. Also, it was carried out by applying experimental results for the energy gaps of these three nanostructures, which makes the results of the theoretical calculations that were more realistic. The optical constants were studied as a function of the energy of the spectrum, which ranged from the ultraviolet region to the infrared region. The sizes of the three nanostructures ranged from 1nm to 10 nm. There are two important factors in determining the results, namely, the increase in the degree of quantum confinement of nanostructures and the decrease in the size of these structures, as it is noted that the absorption coefficient, refractive index, extinction coefficient, and the dielectric constant decrease by the influence of these two factors, taking into account the shifting of energy for each of these constants.
The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
A statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
The present research aims to study the efficiency of infrared material lenses compared with the glass material lenses by determining LSF and CLSF for perfect optical system having circular aperture, Arnorphous(1,2) material transmitting infrared radiation (AMTIR) is used for infrared window, lenses and prisms when transmission in the range of 1-14 pm is desired in application like thermal imaging, astronomical and forward looking infrared (FLIR), AMTIR is the low thermal change in refractive index 72 * 10-6 /C ° is an advantage in lenses design to prevent defocussing.
In this work the design and construction of optical pumping system was presented. The parameters of the pumping source to obtain discharge current density sufficient to shift the flash lamp spectrum towards uv portion of spectrum were measured.The current density was supplied to the flash lamp must be greater than 4000Amp./cm2 to obtain the spectral range wavelength lies between 0.2 and 0.35?m. The current density was obtained by a capacitor 50?F, at 7KV discharge voltage. The applied electrical energy to the flash lamp was more than 1200 J, and the current density was around 5000 Amp./cm2.The electrical parameters of the flash lamp were calculated. The impedance parameters(K0) from the voltage and the peak current pulse was measured in ran
... Show MoreChalcogenide glasses SeTe have been prepared from the high purity constituent elements .Thin films of SeTe compound have been deposited by thermal evaporation onto glass substrates for different values of film thickness . The effect of varying thickness on the value of the optical gap is reported . The resultant films were in amorphous nature . The transmittance spectra was measured for that films in the wavelength range (400-1100) nm . The energy gap for such films was determined .
In this work, study the optical properties of composites consisting of poly Methyl Methacrylate and Berry Paper Mulberry. The samples of composites were prepared using casting method .The Berry Paper Mulberry (BPM) was added by different concentrations are (0, 2, 4 and 6)wt.%. The optical properties of composites have been studied in the wavelength range (200-800)nm. The absorption coefficient ,energy gap, refractive index, extinction coefficient and dielectric constants have been determined. The results show that the optical constants change with increase of BPM concentrations .
The (NiTsPc) thin films operating by vacuum evaporation technique are high recital and good desirable for number of applications, were dumped on glass substrates at room temperature with (200±20nm) thickness and doped with Al at different percentage (0.01,0.03) besides annealing the sample with 200˚C for 1 hours . The stimuluses of aluminum dopant percentage on characterization of the dropped (Ni Ts Pc) thin films were studied through X-ray diffraction in addition from the attained results, were all the films have polycrystalline in nature, as well the fallouts of XRD aimed at film illustrations polycrystalline, depending on the Al ratio doping, the results, SEM exposed the surface is regularly homogeneous. Utilizing first-ideolog
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was