QJ Rashid, IH Abdul-Abbas, MR Younus, PalArch's Journal of Archaeology of Egypt/Egyptology, 2021 - Cited by 4
The expansion of the social media environment has created its own linguistic realities which involve more colloquial communication and practical employment of language. This research focuses on nominalizations in detail, which are originally formed words that have been changed for a noun role. These nominalizations are examined within the context of Facebook posts. The research aims to discover the various nominalizations used and how often they appear in a large sample of data from Public Facebook Posts Corpora. Computational linguistics opened new fields of study and enabled researchers to study large amounts of data easily, making it easier to identify patterns. Two computational methods of identifying nominalization in a large dataset w
... Show MoreNominal ellipsis is a linguistic phenomenon found in English and Arabic .It is
based on leaving out a part of a nominal construction or more for the sake of good
style , compactness and connectedness .This phenomenon is found in the language of
the Glorious Qur’an .The study in hand is concerned with how translators handle
translating Qur’anic verses which contain ellipted nouns , i ,e. , to what extent the
translated Qur’anic verses are close to the original ones , and to what extent their
translations serve understanding the meanings of the glorious verses while at the
same time maintaining their beauty in style. The study aims at shedding light on
nominal ellipsis in English and Arabic .The study undertak
Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreThe aim of this research is to diagnose the impact of competitive dimensions represented by quality, cost, time, flexibility on the efficiency of e-learning, The research adopted the descriptive analytical method by identifying the impact of these dimensions on the efficiency of e-learning, as well as the use of the statistical method for the purpose of eliciting results. The research concluded that there is an impact of the competitive dimensions on the efficiency of e-learning, as it has been proven that the special models for each of the research hypotheses are statistically significant and at a level of significance of 5%, and that each of these dimensions has a positive impact on the dependent variable, and the research recommended
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More