The ligand Schiff base [(E)-3-(2-hydroxy-5-methylbenzylideneamino)- 1- phenyl-1H-pyrazol-5(4H) –one] with some metals ion as Mn(II); Co(II); Ni(II); Cu(II); Cd(II) and Hg(II) complexes have been preparation and characterized on the basic of mass spectrum for L, elemental analyses, FTIR, electronic spectral, magnetic susceptibility, molar conductivity measurement and functions thermodynamic data study (∆H°, ∆S° and ∆G°). Results of conductivity indicated that all complexes were non electrolytes. Spectroscopy and other analytical studies reveal distorted octahedral geometry for all complexes. The antibacterial activity of the ligand and preparers metal complexes was also studied against gram and negative bacteria.
New Schiff bases derived from D-galactose were synthesized by condensation of aldehyde (1,2:3,4-Di-O-isopropylidene-6-carboxaldehyde-α-D-galactopyranose) with different aromatic amines such as (4-bromo, 3-hydroxy, 4-iodo, 4-methoxy) aniline in dry benzene using glacial acetic acid as a catalyst. These compounds were converted to oxazepine derivatives by addition reaction with maleic anhydride in dry benzene as a solvent. The structures of the synthesized compounds have been characterized by elemental analysis, FTIR spectra, some of them by using 1HNMR spectra and measurement of its physical properties.
The new schiff bases derived from D-erythroascorbic acid contaning heterocyclic unit were synthesized by condensation of D-erythroascorbic acid with aromatic amine (containing 1,3,4oxadiazole or 1,3,4-thiadiazole unit) in dry benzene using glacial acetic acid as a catalyst. Derythroascorbic acid [IV] was synthesized by four steps (Scheme 1), while the primary aromatic amine which is containing 1,3,4-oxadiazole [VII] or 1,3,4-thiadiazole [VIII] synthesized by the reaction of 4methoxy benzoyle hydrazine [VI] with 4-amino benzoic acid or by the reaction tuloic acid with thiosemicarbazide, respectively in the presence of POCl3. The new 1,3-oxazepine derivatives were obtained by addition reaction of Schiff bases with d
... Show MoreSome azo compounds were prepared by coupling the diazonium salts of amines with 2,4-dimethylphenol The structure of azo compounds were determined on the basis of elemental analyses, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Complexes of nickel(II) and copper(II) have been synthesized and characterized. The composition of complexes has been established by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity magnetic susceptibility measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observ
... Show MoreIn the present study, new five polymers of acryloyl chloride have been synthesized by reaction 4-aminoantipyrine with many substituted acid chloride (A-E). Then condensation of polyacryloyl chloride with the product in one step (A-E), in a suitable solvent in the presence amount of (Et3N) to obtain new polyimides(A1-E5). The prepared compounds were characterized by UV. FT-IR, 1H-NMR and 13C-NMR spectroscopy and measuring of other physical properties such as softening point, melting point and solublities.
Innovative various Schiff bases and their Co(II), Ni(II) and Cu(II) and Hg(II) compounds made by the condensation of 4-amino antipyrine with derived aminobenzoic acid (2-aminobenzoic acid, 3-aminobenzoic acid, and 4-aminobenzoic acid ) have been prepared by conventional approaches. These complexes were described by magnetic sensibility analysis, FT-IR spectra, and molar-conductance and elemental analysis. Analytical values appeared which the mixed-ligand complexes presented ratio about 2:1 (ligand: metal) with the chelation 4 or 6. The prepared compounds offered a good effect on the organisms; bacteria Staphylococcus-aurous, Escherichia-coli and fungi C. albicans, A. niger. Also, the biological products signalize which the mixed compl
... Show MoreThe work includes synthesis of 1,2,3-triazoles via click conditions and using the microwave irradiation starting from two synthesized azides: 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl azide (5) and perfluorobutylethyl azide (10) and different terminal alkynes. It also includes microwave enhanced synthesis of tetrazoles via the reaction of two synthesized azides i.e., perfluorobutylethyl azide (10) and 1,5-diazidopentane (13) with benzoyl cyanide. Most of the prepared compounds have been characterized by: TLC, FT-IR, 1H NMR, 13C NMR, LC-MS and microelemental analysis
In the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes wi
... Show MoreIn this study new derivatives of Schiff bases 5-8, 1, 3-oxazepine 9-16 and tetrazoles 17-19 have been synthesized from the new starting material 1 which has synthesized the reaction of one mole of dichloro acetic acid and two moles of thiophenol, the esters 2-3 were synthesized from the reaction of compound 1 with methanol or ethanol respectively in the presence of H2SO4 as catalyst then 2, 2-dithiophenylaceto Hydrazide 4 were synthesized from the reaction of 2 or 3 with hydrazine hydrate 80%, Schiff bases 5-8 were synthesized from the reaction of 4 with appropriate aldehyde or ketone. Treatment of Schiff bases with maleic and phathalic anhydride in dry benzene to give 1, 3-oxazepen derivatives 9-16 and with sodium azide in tetrahydrofuran
... Show More