This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of the present algorithm is simple, and the running operations required small execution time for encryption-decryption sensing data. Hence, a developed algorithm called DPRESENT was introduced to improve the complexity of the cipher text based on the PRESENT algorithm and DNA cryptography technique for developing a lightweight cipher algorithm. The NIST suite showed that the proposed algorithm tests presented high level of randomness and complexity. The execution time for the proposed algorithm was kept minimal as the current cipher algorithm. The developed algorithm is a new trend that can be applied for different lightweight cryptosystems to achieve the trade-off among complexity and speed as a robust cipher algorithm.
An automatic text summarization system mimics how humans summarize by picking the most significant sentences in a source text. However, the complexities of the Arabic language have become challenging to obtain information quickly and effectively. The main disadvantage of the traditional approaches is that they are strictly constrained (especially for the Arabic language) by the accuracy of sentence feature functions, weighting schemes, and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha
... Show MoreIn this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
Abstract Since unmethylated CpG motifs are more common in DNA from bacteria than vertebrates, and the unmethylated CpG motif has recently been reported to have stimulatory effects on lymphocytes, we speculated that bacterial DNA may induce inflammation in the urinary tract. To determine the role of bacterial DNA in lower UTI, we intraurethrally injected prokaryotic DNA (extracted from E. coli) in white mice and performed histopathological study for the kidneys and urinary bladders, 24 h after the exposure. The results showed infiltration of inflammatory cells, shrinkage of glomerulus and increase the capsular space, as well as edema formation in kidney tissues. Moreover, urinary bladder sections showed infiltration of inflammatory cells.
... Show MoreBacteria form complex and highly elaborate surface adherent communities known as biofilms.Biofilm have been shown to be associated with several human diseases ,and to colonize a wide variety of medical devices . The current study focuses on contribution of extracted genomic DNA in biofilm formation by P. aeruginosa and K. pneumoniae isolates .The percentages of Pseudomonas aeruginosa recovery from drinking water in this study were 10%(20 positive P. aeruginosa samples ) and K. pneumonia., 7%(14 positive K. pneumonia samples).The results showed that all P.aeruginosa and K. pneumoniae isolates (100%) were slime producer but in different degrees by forming of black
... Show More