The goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed that the critical particle size was 0.01 mm, which means that most particles with diameters larger than 0.01 mm settled due to physical force, while most particles with diameters smaller than 0.01 mm settled due to flocculation process. At 10 m from the inlet zone, the removal efficiency was more than 60% of the total removal rate, indicating that increasing basin length is not a cost-effective way to improve removal efficiency. The influence of the flocculation process appears at particle sizes smaller than 0.01 mm, which is a small percentage (10%) of sieve analysis test. When the percentage reaches 20%, the difference in accumulative removal efficiency rises from +3.57% to 11.1% at the AL-Muthana sedimentation unit.
As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreIncremental sheet metal forming process is an advanced flexible manufacturing process to produce various 3D products without using dedicated tool as in conventional metal forming. There are a lot of process parameters that have effect on this process, studying the effect of some parameters on the strain distributions of the product over the length of deformation is the aim of this study.
In order to achieve this goal, three factors (tool forming shape, feed rate and incremental step size) are examined depending on three levels on the strain distributions over the wall of the product. Strain measurement was accomplished by using image processing technique using MATALB program. The significance of the control factors are explored u
... Show MoreIn this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34
... Show MoreThe aim of this work was to develop and validate a rapid and low cost method for estimation of ibuprofen in pharmaceutical suspensions using Reverse-Phase High Performance Liquid Chromatography. The proposed method was conducted and validated according to International Conference on Harmonization (ICH) requirements. The chromatographic parameters were as follows: column of octyldecylsilyl C18 with dimensions (150 × 4.6) mm, mobile phase composed of acetonitrile with phosphoric acid with a ratio of 50 to 50 each using isocratic mode, flow rate of 1.5 mL/min and injection volume of 5 μL. The detection was carried out using UV detector at 220 nm. The method was validated and showed short retention time for ibuprofen peak at 7.651 min, wit
... Show MoreBased on the diazotization-coupling reaction, a new, simple, and sensitive spectrophotometric method for determining of a trace amount of (BPF) is presented in this paper. Diazotized metoclopramide reagent react with bisphenol F produces an orange azo-compound with a maximum absorbance at 461 nm in alkaline solution. The experimental parameters were optimized such as type of alkaline medium, concentration of NaOH, diazotized metoclopramide amount, order additions, reaction time, temperature, and effect of organic solvents to achieve the optimal performance for the proposed method. The absorbance increased linearly with increasing bisphenol F concentration in the range of 0.5-10 μg mL-1 under ideal conditions, with a correlati
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreThis study focuses on diagnosis of Candida species causing Vulvovaginal Candidiasis using phenotype and genotype analyzing methods, and frequencies of candida species also using Vulvovaginal Candidiasis patients. 130 samples (100 from patients and 30 from non infected women) were collected and cultured on biological media. Identifying the yeasts, initially some phenotypic experiments were carried out such as germ tube, from motion of pseudohyphae and clamydospores in CMA+TW80 medium, API20 candida and CHROMagar Candida. Genomic DNA of all species were extracted and analyzed with PCR and subsequent Polymerase Chain Reaction - Restriction Fragments Length Polymorphism (PCR-RFLP) methods. Frequency of C. albicans, C. krusei, C. tropicalis , C.
... Show MoreA simple, sensitive, accurate and low cost effective spectrophotometric method has been developed for the determination of Tetracycline and Doxycycline in pure and pharmaceutical formulations. The method is based on the reaction of methyldopa with 4-aminoantipyren (4-AAP) in presence of potassium ferriecyanide (PFC) in an alkaline medium. Two optimization methods were applied to determine the optimum conditions of oxidizing coupling reaction variables; univariate and design of experiment (DOE) method. The conditions effecting the reaction; pH, buffer Volume, reagent concentration, oxidant concentration, type of buffer, order of addition, time of reaction and stability were optimized . Under univariate and design
... Show More