This paper describes the transport of Alkaloids through Rotating Discs Contactor (RDC) using n-decane as a liquid membrane. The transport of Pelletierine Alkaloid from a source phase through bulk liquid membrane to the receiving phase has been investigated. The general behaviour of Pertraction process indicates that% Extraction of pelletierine Alkaloid increased with increase in the number of stages and the agitation speed but high agitation speed was not favoured due to the increased risk of droplet formation during the operation. The pH of source and receiving phases were also investigated. The effect of organic solvent membrane on the extraction of Pelletierine was evaluated using ndecane, n-hexane and methyl cyclohexane. The results showed that n-decane has a good extracting ability. The highest% Extraction of pelletierine Alkaloid was observed of (69.16%).
In this work, the effect of different particle size on the nonlinear optical properties of silver nanoparticles in de-ionized water was studied. The experimental observation of the far field diffraction patterns by CCD camera in two and three dimensions. The maximum change of nonlinear refractive index and the relative phase shift were calculated. The self-defocusing technique was used with a continuous-wave radiation from DPSS Blue laser .The wavelength is 473 nm with an output power of 270 mW. All the Ag colloids samples containing the sizes 15, 30, 50, and 70 nm of silver nanoparticles used in the study were chemically prepared. It was found that the nonlinear refractive index is a particle size dependent and of the order of 10-7 cm2/
... Show MoreZinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
The aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob
In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
For the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreA new method for the determination of the drug cefalexin in some Pharmaceuticals using (UV-Vis) and indirect Flame Atomic Absorption Spectrophotometer (FAAS) , Fe III should forms a chelating complex with cefalexin (CEX –Fe III) at pH (1-8) and the best pH for the formation of (CEX –Fe III) chelating complex was (2) .The complex extracted with Methanol and Dimethy-Sulphoxide .The mole-ratio method has been used to determine the structure of chelate (CEX - Fe III) and found to be 2:1 LM ( Ligand : Metal.) .
Keywords : Cefalexin , chelating complex.
Undoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.
Citrate-gel auto combustion technique was used to synthesize nickel-copper mixed ferrite nanoparticles NixCu1-xFe2O4 (x= 0.0, 0.4, 1.0) with different calcinating temperatures (200, 450, 650 and 850 °C). Structural, morphological, magnetic, and electrical properties were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and LCR meter in order to determine significant influences of Cu2+ cations content in nickel ferrite. The XRD patterns showed that all compositions had cubic spinels, except CuFe2O4
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.