—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when combined principal component analysis and feed forward back propagation neural network. This work has investigated the ability to improve the CAD system in order to use in detection abnormality even with low cost diagnosis methods (such as mammogram images or X-ray). The results show that the reduction of correlated details within the training data by using the PCA method can enhance the recognition performance. The performance of the neural network diagnostic to discriminate the normal cases from cancerous cases, evaluated by using recognition analysis show a high accuracy in detection. The proposed approach can be considered as a potential tool for diagnosis breast cancer from x-ray and mammography images and prediction for nonexperts and clinicians.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreThe present work aims to improve the flux of forward osmosis with the use of Thin Film Composite membrane by reducing the effect of polarization on draw solution (brine solution) side.This study was conducted in two parts. The first is under the effect of polarization in which the flux and the water permeability coefficient (A) were calculated. In the second part of the study the experiments were repeated using a circulating pump at various speeds to make turbulence and reduce the effect of polarization on the brine solution side.
A model capable of predicting water permeability coefficient has been derived, and this is given by the following equations:
Z=Z0 +C.R.T/9.8(d2/D2+1) [Exp. [-9.8(d
Picasso ceramics represented illuminated sign in ceramic art and excelled in accord ceramic art dimension aesthetically, and put it in a new prospects, despite the simplicity of the forms turn into a magical images and multiple interpretations.
So the search deliberately to choose purposive (37) samples divided into four groups, as follows: -
A flat shapes / palets or saucers / the vases /modified vases .
benefiting from indicators were spawned from literature ,to analyzing samples within the totals for the identification systems act forming art work`s:-
(1)Picasso's ceramic work product of a deliberate process represented a capacity of technical experience, and formal
(2)The system configuration in the ceramic art works c
One of the contemporary trends in education and training is the use of educational, competitive and digital games, because one of the most important goals of games is (motivation and challenge). Thus, it ensures the expected reaction from the recipient’s interaction with the game, so we seek his interaction with the content he receives. It is no secret that games distance him from boring content and introduce him to the world of motivation by integrating them with magical elements that make an attractive and desirable game. Naturally, in the case of stimuli and motives that activate the recipient within the context of the educational process procedures, the return is high and especially enjoyable. The aim of the research is to pre
... Show MoreThe paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.