Preferred Language
Articles
/
-hZXBYcBVTCNdQwCjS4T
Spray pyrolysis of graphene oxide based composite for optical and wettability applications
Abstract<p>In this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates along their accumulation directions. The relationship between the contact angle of the water drop and the surface of thin films was analyzed by surface roughness. The results show that the contact angle is also decreased by decreasing the surface roughness. Absorption and transmittance spectra obtained from (UV–vis) of the studied films were used to compute and determine some optical parameters such as absorption coefficient, transmittance rate, optical gap, refractive index and extinction coefficient of the films. The calculated optical band gaps of films decrease by increase the silica contents in these structures.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
EFFECT AMBIENT OXIDATION ON STRUCTURAL AND OPTICAL PROPERTIES OF COPPER OXIDE THIN FILMS

The structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.

Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Experimental Measurements of Viscosity and Thermal Conductivity of Single Layer Graphene Based DI-water Nanofluid

Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of  concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Laser wavelength and energy effect on optical and structure properties for nano titanium oxide prepared by pulsed laser deposit

Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Advances In Materials Physics And Chemistry
The Effect of Zn Concentration on the Optical Properties of Cd10–xZnxS Films for Solar Cells Applications

ABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3

... Show More
Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Preparing and Studying Structural and Optical Properties of Pb1-xCdxS Nanoparticles of Solar Cells Applications

Nanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,

... Show More
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
International Journal Of Nanoscience
Study of the Interaction Between Reduced Graphene Oxide and NO<sub>2</sub>Gas Molecules via Density Functional Theory (DFT)

Electronic properties such as density of state, energy gap, HOMO (the highest occupied molecular orbital) level, LUMO (the lowest unoccupied molecular orbital) level and density of bonds, as well as spectroscopic properties like infrared (IR), Raman scattering, force constant, and reduced masses for coronene C24, reduced graphene oxide (rGO) C24O5and interaction between C24O5and NO2gas molecules were investigated. Density functional theory (DFT) with the exchange hybrid function B3LYP with 6-311G** basis sets through the Gaussian 09 W software program was used to do these calculations. Gaussian view 05 was em

... Show More
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 24 2017
Journal Name
Journal Of Engineering
Composite Techniques Based Color Image Compression

Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh

... Show More
Publication Date
Tue Feb 28 2017
Journal Name
Journal Of Engineering
Composite Techniques Based Color Image Compression

     Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd  level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet

... Show More
View Publication Preview PDF
Publication Date
Thu May 25 2023
Journal Name
Polycyclic Aromatic Compounds
Effect of Modified Nano-Graphene Oxide and Silicon Carbide Nanoparticles on the Mechanical Properties and Durability of Artificial Stone Composites from Waste

Sludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Computer Aided Design for Spray Driers

The aim of this work is to develop an axi-symmetric two dimensional model based on a coupled simplified computational fluid dynamics (CFD) and Lagrangian method to predict the air flow patterns and drying of particles.  Then using this predictive tool to design more efficient spray dryers. The approach to this is to model what particles experience in the drying chamber with respect to air temperature and humidity. These histories can be obtained by combining the particles trajectories with the air temperature/humidity pattern in the spray dryer. Results are presented and discussed in terms of the air velocity, temperature, and humidity profiles within the chambers and compared for drying of a 42.5% solids solution in a spray chamber

... Show More
View Publication Preview PDF