Flow unit and reservoir rock type identification in carbonates are difficult due to the intricacy of pore networks caused by facies changes and diagenetic processes. On the other hand, these classifications of rock type are necessary for understanding a reservoir and predicting its production performance in the face of any activity. The current study focuses on rock type and flow unit classification for the Mishrif reservoir in Iraq's southeast and the study is based on data from five wells that penetrate it. Integration of several methods was used to determine the flow unit based on well log interpretation and petrophysical properties. The flow units were identified using the Quality Index of Rock and the Indicator of Flow Zone. The Winland correlation was used to determine the pore throat size. The Lucia classification was based on fabric rock number, and cluster analysis detects rock types using well log data within the Mishrif Formation. Four rock types have been specified by the combination of these approaches grainstone-packstone, packstone-wackestone, Wackestone-Mudstone and Mudstone.
Yamama Formation (Valanginian-Early Hauterivian) is one of the most important oil production reservoirs in southern Mesopotamian Zone. The Yamama Formation in south Iraq comprises outer shelf argillaceous limestones and oolitic, pelloidal, pelletal and pseudo-oolitic shoal limestones. The best oil prospects are within the oolite shoals. Yamama Formation is divided into seven zones: Upper Yamama, Reservoir Units YR-A & YR-B separated by YB-1, and YR-B Lower & two Tight zones: low (porosity, permeability and oil saturation) with variable amounts of bitumen. These reservoir units are thought to be at least partially isolated from each other.
A3D geological model was constructed for Al-Sadi reservoir/ Halfaya Oil Field which is discovered in 1976 and located 35 km from Amara city, southern of Iraq towards the Iraqi/ Iranian borders.
Petrel 2014 was used to build the geological model. This model was created depending on the available information about the reservoir under study such as 2D seismic map, top and bottom of wells, geological data & well log analysis (CPI). However, the reservoir was sub-divided into 132x117x80 grid cells in the X, Y&Z directions respectively, in order to well represent the entire Al-Sadi reservoir.
Well log interpretation (CPI) and core data for the existing 6 wells were the basis of the petrophysical model (
... Show MoreCapillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreCapillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MorePermeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MorePorosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MoreThis research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of 602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated tha
... Show MoreThe CenomanianÐEarly Turonian reservoirs of the Mishrif Formation of the Mesopotamian Basin hold more than one-third of the proven Iraqi oil reserves. Difficulty in predicting the presence of these mostly rudistic reservoir units is mainly due to the complex paleogeography of the Mishrif depositional basin, which has not been helped by numerous previous studies using differing facies schemes over local areas. Here we present a regional microfacies-based study that incorporates earlier data into a comprehensive facies model. This shows that extensive accumulation of rudist banks usually occurred along an exterior shelf margin of the basin along an axis that runs from Hamrin to Badra a
The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, wh
... Show More