Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O2) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic profiles. Epigenetic mechanisms affect multiple cellular characteristics including gene expression during development and cell-fate determination in differentiated cells. We hypothesized that epigenetic marks are responsive to a reduced oxygen microenvironment in PSCs and their differentiation progeny. Here, we evaluated the role of physoxia in PSC culture, the regulation of DNA methylation (5mC (5-methylcytosine) and 5hmC (5-hydroxymethylcytosine)), and the expression of regulatory enzyme DNMTs and TETs. Physoxia enhanced the functional profile of PSC including proliferation, metabolic activity, and stemness attributes. PSCs cultured in physoxia revealed the significant downregulation of DNMT3B, DNMT3L, TET1, and TET3 vs. air oxygen, accompanied by significantly reduced 5mC and 5hmC levels. The downregulation of DNMT3B was associated with an increase in its promoter methylation. Coupled with the above, we also noted decreased HIF1A but increased HIF2A expression in physoxia-cultured PSCs versus air oxygen. In conclusion, PSCs display oxygen-sensitive methylation patterns that correlate with the transcriptional and translational regulation of the de novo methylase DNMT3B.
Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and
... Show MoreIn Present study, 25 clinical isolates of Proteus spp. of clinical samples, urine, wounds and burns collected from different hospitals in Baghdad city, all isolates were identified as Proteus mirabilis using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifying as P. mirabilis. The susceptibility of P. mirabilis isolates to cefotaxime was 66.6 %, while to ceftazidime was 20%. Extended spectrum β-lactamses producing Proteus was 30.7 %. DNA of 5 isolates of P. mirabilis was extracted and detection for blaVEB-1 gene by using multiplex polymerase chain reaction (PCR). Results showed that the presence of this gene in all tested isolates, as an important indicator for increas
... Show MoreBackground: Diabetic mellitus (DM) is a collection of metabolic disorder identified by hyperglycemia. The heterogeneous etiology includes defects either in insulin secretion, or in insulin action, or the both. In addition to the distraction in carbohydrate, fat and protein metabolism. Inflammatory reaction that caused by many pro-inflammatory cytokines play a central role in the pathogenicity of T2DM, these cytokines can enhance insulin resistance which led to impaired glucose homeostasis. Subjects: The study included 75 patients (38 males and 37 females) suffering from T2DM with age mean ± SE 52.30 ± 1.60, and 70 individuals as healthy controls (35 males and 35 females) with age mean ± SE 48.88 ± 0.64. Evaluation of immunological marke
... Show MoreBackground: CYP1A1 gene polymorphisms and tobacco smoking are among several risk factors for various types of cancers, but their influence on breast cancer remains controversial. We analyzed the possible association of CYP1A1 gene polymorphisms and tobacco smoking-related breast cancer in women from Iraq. Materials and methods: In this case-control study, gene polymorphism of CYP1A1 gene (CYP1A1m1, T6235C and CYP1A1m2, A4889G) of 199 histologically verified breast cancer patients' and 160 cancer-free control women's specimens were performed by using PCR-based restriction fragment length polymorphism. Results: Three genotype frequencies (TT, TC, and CC) of CYP1A1m1T/C appeared in 16.1, 29.6, and 54.3% of women with breast cancer, respectiv
... Show MoreThe recent studies suggested the possible toxicities or genetic alterations associated with biological and medical applications of silver nanoparticles (AgNPs). The current research is directed to see if AgNPs administration can lead to some changes in expression of BRAF gene in selected body organs tissues. Fifty-six male of musmusculs (Balb/C) mice from the animal house of Al-Nahrain Centre of Biotechnology were used. These animals were divided randomly to seven groups (eight mouse in each group), one of these groups represented the control group, three groups were subjected to different doses of AgNPs (0.25, 0.5and 1 mg/kg of body weight) for one week, and the remaining three groups were subjected to three different doses of AgNP
... Show MorePeriodontitis is one of the most prevalent bacterial diseases affecting man with up to 90% of the global population affected. Its severe form can lead to the tooth loss in 10-15% of the population worldwide. The disease is caused by a dysbiosis of the local microbiota and one organism that contributes to this alteration in the bacterial population is Prophyromonas gingivalis. This organism possesses a range of virulence factors that appear to contribute to its growth and survival at a periodontal site amongst which is its ability to invade oral epithelial cells. Such an invasion strategy provides a means of evasion of host defence mechanisms, persistence at a site and the opportunity for dissemination to other sites in the mouth. However, p
... Show More