Objective: The present study was aimed to develop a pH-triggered in situ gel for local release of lidocaine hydrochloride (lidocaine HCL) in the buccal cavity to improve the anesthetic effect of this amino amide drug which has very high water solubility. The formulations were introduced to the oral cavity as a spray to improve compliance and for easier administration.Methods: In this work, two grades of carbopol (934 and 940)-based in situ gel spray were designed. The formulations containing lidocaine HCl 5% were prepared by mixing different concentrations of carbopol with xanthan gum. Eight formulations were investigated and evaluated for gelation capacity, spray angle, volume of solution delivered per each actuation, rheological properties, and release kinetic model. Similarity factor (f2) was used for the comparison of dissolution profiles.Results: The prepared formulations undergo gelation after it had been actuated to the buccal cavity as a spray solution. The results showed that, as the concentration of polymer was increased, the release of drug decreased and the viscosity increased for both grades. The spray angle and volume of solution delivered per each actuation varied according to the composition of each formulation. The in situ gel containing 0.3% carbopol 934 and 0.2% xanthan gum regarded as a better candidate which had a good gelation and release property compared to other formulations. Drug release from optimized in situ gel spray followed Korsmeyer–Peppas model and was mediated by Fickian diffusion mechanism.Conclusion: Lidocaine HCl-loaded pH-sensitive in situ gel was successfully developed using carbopol 934 as polymer to be applied to the buccal cavity as spray solution for more effective anesthetic effect and painless treatment.
This study was undertaken to prepare Nano zinc oxide (ZnO) by precipitation and microemulsion methods. Scanning electron microscopy (SEM), X-ray diffraction (XRD), FTIR spectrometry, atomic force microscopy (AFM), and Brunauer Emmett Teller (BET) surface area were the techniques employed for the preparation. The particle size of prepared nano ZnO was 69.15nm and 88.49nm for precipitation and microemulsion methods, respectively, which corresponded to the BET surface area 20.028 and 16.369m2/g respectively. The activity of prepared nano ZnO as a photocatalyst was estimated by the removal of ampicillin (Amp) under visible light. This study, therefore, examined the effect of pH in the range of 5-11, initial concen
... Show MoreBackground: Denture relining is the process of resurfacing of the tissue side of the ill fitting denture, the bond strength at the relining-denture base interface is most important for denture durability.The aim of present study was to evaluate the shear bond strength between the thermosens as relining material and different denture base materials that bonded by thermo fusing liquid. As this corrective procedureis the common chair side procedure in the dental clinic. Material and method: Sixty samples were prepared and divided into three main groups according to the type of denture base materials.Group (A) referred to the heat cure acrylic samples which consisted of 20 samples. Group (B) referred to the high impact acrylic samples which con
... Show MoreDrug nanocrystals are nanoscopic crystals of the parent compound with dimensions less than 1 µm. A decrease in particle size will lead to an increase in effective surface area in the diffusion layer, which, in turn, increases the drug dissolution rate. Drug nanocrystals are one of the most important strategies to enhance the oral bioavailability of hydrophobic drugs.
Cefixime is the first member of what is generally termed the third generation orally active cephalosporins. These third generation cephalosporins are distinct from the older β-lactam antibiotics in their intensive antibacterial activity against a wide range of gram-negative bacteria.
The aim of this study is to prepare nanocrystals of cefixime as a caps
... Show MoreThe antibacterial activities of some nanoparticles, makes them attractive as a new agents against pathogenic bacteria. In this research, the antimicrobial effects of Titanium dioxide-nano-particles against seven bacterial isolates (E.coli, Enterobacter aerogenes, Pseudomonas alcaligenes, Aeromonas veronii, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus) being isolated from different Baghdad water purification stations investigated. The physiochemical characters, which influence the quality of the drinking water for the air and water, demonstrated.The characterization of nanoparticles investigated by using Scanning Electrone Microscope, FTIR, and UV-Visible Spectrophotometer. The activity of different concentration of
... Show MoreThis study was conducted in the poultry field of the Department of Animal Production - Faculty of Agriculture - University of Baghdad (Abu Ghraib) for the period from 28/9/2017 to 9/11/2017 for a period of six weeks (42 days), was used in the experiment 300 chick of broiler (Ross 308) one day old. The aim of this study was to effect of adding supplementing different levels of bee pollen (0, 250, 500, 750 and 1000) gm/100kg on Productive Performance. The chicks were randomly distributed in to five treatments, T1 control (without any addition), (T2, T3, T4 and T5) adding bee pollen in the diet 250, 500, 750 and 1000 gm/100kg respectively. The results showed that bee pollen in the diet level 1000 gm/100 kg led to significant increase in the we
... Show MoreThis research included measuring the concentrations of natural radioactive isotopes U-238 and Th-232 and radiation dose rates for selected areas of Missan province, GR-460 system was used which has the potential to measure the concentrations of natural radioactive isotopes in (ppm) unit and measuring the radiation dose rates in μR/h unit. It was also used with the system the mobile device FH-40 which measures the radiation dose rates in units μSμ/h the measurement results showed the absence of a significant increase in the U-238 and Th-232 concentration where the concentration of isotopes of U-238 and natural Th-232 (3.35-5.46) ppm respectively it is authorized and universally accepted. In terms of radiation dose rates it ranged betwe
... Show MoreOur life is a test and the eternal life in the afterlife. So we must work well in our life even win paradise, must always remember the death and there is a life after this death and we will be responsible for everything we've done in our life. God did not create us vain but for reward, punishment, for this we must have to well prepare for this great day and we have to think about what to do in order to win the paradise.
Keywords: paradise, surat al-rahman, preparation.
Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by
... Show MoreThe Atmospheric Infrared Sounder (AIRS) on EOS/Aqua satellite provides diverse measurements of Methane (CH4) distribution at different pressure levels in the Earth's atmosphere. The focus of this research is to analyze the vertical variations of (CH4) volume mixing ratio (VMR) time-series data at four Standard pressure levels SPL (925, 850, 600, and 300 hPa) in the troposphere above six cities in Iraq from January 2003 to September 2016. The analysis results of monthly average CH4VMR time-series data show a significant increase between 2003 and 2016, especially from 2009 to 2016; the minimum values of CH4 were in 2003 while the maximum values were in 2016. The vertical distribution of CH4<
... Show More