The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb−1, respectively, while the limit of detection for both ions was 0.6 ppb. These findings support the feasibility and potential of the sensor configuration towards paving future advancement in As detection systems.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
A single-crystalline semi-polar gallium nitride (11-22) was grown on m-plane (10-10) sapphire substrate by metal organic chemical vapor deposition. Three-step approach was introduced to investigate the grain size evolution for semi-polar (11-22) GaN. Such approach was achieved due to the optimized gallium to ammonia ratio and temperature variations, which led to high quality (11-22) oriented gallium nitride epilayers. The full width at half maximum values along (-1-123) and (1-100) planes for the overgrowth temperature of 1080°C were found to be as low as 0.37° and 0.49°, respectively. This was an indication of the enhanced coalescence and reduction in root mean square roughness as seen by atomic force microscopy. Surface analysi
... Show MoreThis present work is concerned with one of the syntactic issues that has been researched by many linguists, grammarians, and specialists in Islamic studies, the estimated answer to a condition. However, this topic is researched this time by examining Imam Al-Qurtbi’s opinions in interpreting related ayas from the holly Quraan in his book (Collector of Quranic Rules) or its transliteration (Al-Jami’ Li Ahkam Al-Quran). Such a step involves commenting on, tracking what Al-Qurtbi said in this regard, discussing it from the points of view of other grammarians, and judging it accordingly, taking into account the apparent surface structures of the examples collected. To achieve this objective, the inductive analytical approach has be
... Show MoreThis study develops a systematic density functional theory alongside on-site Coulomb interaction correction (DFT + U) and ab initio atomistic thermodynamics approachs for ternary (or mixed transitional metal oxides), expressed in three reservoirs. As a case study, among notable multiple metal oxides, synthesized CoCu2O3 exhibits favourable properties towards applications in solar, thermal and catalytic processes. This progressive contribution applies DFT + U and atomistic thermodynamic approaches to examine the structure and relative stability of CoCu2O3 surfaces. Twenty-five surfaces along the [001], [010], [100], [011], [101], [110] and [111] low-Miller-indices, with varying surface-termination configurations were selected in this study.
... Show MoreElectrocoagulation process was employed for the treatment of river water flows in Iraq. In this study, a batch Electrocoagulation process was used to treat river water taken from Al - Qadisiyah water treatment plant. electrolysis time, voltage and inter-electrode spacing were the most important parameters to study . A statistical model was developed using the RSM model. The optimum condition after studying the parameter effect the process was 1 cm separating, 30 volts . The RSM model shows the ideal condition of removal for both the TSS and turbidity at 1 cm, 20 volts and 55 min.