The traditional city suffers from the decline of the urban image due to urban development and homogeneity with the urban context of the city, and because of the lack of determinants governing the urban image, it is that the center of the city of traditional Kadhimiya suffers from a break in the urban image, Therefore, the research included how to build a distinctive urban image of the center of the traditional city of Kadhimiya and achieve the visual pleasure and comfort of the recipient and the urban image here means is an image not picture which are related to several aspects, including physical, social and psychological as well as the collective memory of individuals and their relationship with their environment and a sense of them and thus, interacting with it. The indicators of the research were drawn from the theoretical framework which is measured by the questionnaire to be applied to the study area. The research found that the compact city’s characteristics (high density, mixed-use, accessibility, proximity, public transportation directly influence the formation of the urban image through diversity, complexity, variability, and diversity of housing options and urban activities as a result of their impact on (identity, meaning, structure). The most important conclusions and recommendations were that the cognitive process of the urban image is linked to the collective memory, social and cultural values, customs, traditions, attention to the surrounding area of the shrine and its rehabilitation to fit the urban context and achieve visual enrichment and reinforce the sense of belonging to the city by building the urban image.
Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreRecently, the internet has made the users able to transmit the digital media in the easiest manner. In spite of this facility of the internet, this may lead to several threats that are concerned with confidentiality of transferred media contents such as media authentication and integrity verification. For these reasons, data hiding methods and cryptography are used to protect the contents of digital media. In this paper, an enhanced method of image steganography combined with visual cryptography has been proposed. A secret logo (binary image) of size (128x128) is encrypted by applying (2 out 2 share) visual cryptography on it to generate two secret share. During the embedding process, a cover red, green, and blue (RGB) image of size (512
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreBackground: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.
Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.
Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).
Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated
... Show MoreMany approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreInformation hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show More