Background: Optimal root canal retreatment was required safe and efficient removal of filling material from root canal. The aim of this in vitro study was to compare the efficacy of reciprocating and continuous motion of four retreatment systems in removal of root canal filling material. Materials and Methods: Forty distal roots of the mandibular first molars teeth were used in this study, these roots were embedded in cold clear acrylic,roots were instrumented using crown down technique and rotary ProTaper systemize Sx to size F2 ,instrumentation were done with copiousirrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilledwater, roots were obturated with AH26 sealer and Protaper gutta-percha point F2 and medium fine accessory gutta-percha using lateral condensation technique,roots were left for 7 days with 100% humidity at 37ºC in an incubator. Roots were randomly divided into four groups according to technique used for removing the root filling material (ten teeth for each group): group I: reciprocating technique and Wave One system, group II: continuous technique and ProTaper retreatment system, group III: continuous technique and R-Endo system, group IV: continuous technique and D–RaCere treatment system. All the roots were radiographed before and after removal of gutta-percha from both bucco-lingual and mesiodistal directions using custom made platform and digital radiograph system RVG to havea digitized images. The total surface area of all root canals was measured before removal ofthe gutta-percha and the area of the remaining gutta-percha filling in the canals after retreatment procedure from both directions. These measurements were analyzed with Adobe Photoshop CS6 software, the percentage of removed gutta-percha calculated. Results: Statistical analysis was performed and the result showed group Ihad the highest mean values in removal of root canal filling material in both bucco-lingual and mesiodistal direction of dental radiograph and there were significant difference between group I and most of the other groups ,there were non significant difference between group II,group III and group IV. Conclusion: This study was showed all the used retreatment systems did notcompletely remove the root canal filling material. The reciprocating technique was most effective method for removing gutta-percha and sealer than continuous rotary technique
چکیدهی بحث
به نظر میآید که عالم هستی ، بر مسألهی « حرکت» استوار دارد ، و روح ، همیشه دنبال دگرگونی و تکامل و برتری میگردد. حرکت ، همهی چیزها در عالم إمکان را در بر میگیرد. حرکت در بنیادهای فکر مولانا جای مهمی دارد .اشعار مولانا مقدار زیادی از پویایی و حرکت برخوردارست، و از آنجایی که فعل ، عنصر تکانبخش جمله ، و کانون دلالت است ، ترجیح دادیم - علاوه بر دیگر عنا
... Show More. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show MoreCoupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
The Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FTIR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2 -) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine by KOH (Ala
... Show MoreThe adsorption ability of Iraqi initiated calcined granulated montmorillonite to adsorb Symmetrical Schiff Base Ligand 4,4’-[hydrazine-1, 2-diylidenebis (methan-1-yl-1-ylidene)) bis (2-methoxyphenol)] derived from condensation reaction of hydrazine hydrate and 4-hydroxy-3-methoxybenzaldehyde, from aqueous solutions has been investigated through columnar method.The ligand (H2L) adsorption found to be dependent on adsorbent dosage, initial concentration and contact time.All columnar experiments were carried out at three different pH values (5.5, 7and 8) using buffer solutions at flow rate of (3 drops/ min.),at room temperature (25±2)°C. The experimental isotherm data were analyzed using Langmuir, Freundlich and Temkin equations. The monol
... Show MoreThis research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.
The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S =
... Show MoreNovel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show More