New, easy, simple, and fast spectral method for estimation of sulfamethoxazole (SMZ) in pure and pharmaceutical forms. The proposed method is based on the azotization of the drug compound by sodium nitrite in an acidic medium and then coupling with 2,3dimethyl phenol reagent (DMP) in a basic medium to yield an orange-coloured dye which shows λmax at 402 nm. Different affection of the optimization reaction has been completed, following the classical univariate sequence. The concentration of sulfamethoxazole about (1-15) μg. mL-1 with molar absorptivity of (14943.461) L.mol1 .cm-1 that obeyed Beer’s law. The detection and quantification limits were (0.852, 2.583) μg. mL-1 respectively, while the value of Sandell’s sensitivity (0.016) μg.cm-2 . The suggested technique was effective and good for the evaluation of sulfamethoxazole in dosage preparation.
A direct, sensitive and efficient spectrophotometric method for the determination of nitrofurantoin
drug (NIT) in pure as well as in dosage form (capsules) was described. The suggested method was
based on reduction NIT drug using Zn/HCl and then coupling with 3-methyl-2-benzothiazolinone
hydrazone hydrochloride (MBTH) in the presence of ammonium ceric sulfate. Spectrophotometric
measurement was established by recording the absorbance of the green colored product at 610 nm.
Using the optimized reaction conditions, beer’s law was obeyed in the range of 0.5-30 μg/mL, with
good correlation coefficient of 0.9998 and limits of detection and quantitation of 0.163 and 0.544
μg/mL, respectively. The accuracy and
Simple, sensitive, accurate and inexpensive spectrophotometric methods have been developed for the determination of sulfamethoxazole (SMZ) in pure and dosage forms. This method is based on diazotization of primary amine group of sulfamethoxazole with sodium nitrite and hydrochloric acid followed by coupling with diphenylamine in acidic medium to obtain a stable blue colored dye and show a maximum absorption (max) at 530 nm. Different variables affecting the completion of reaction have been carefully optimized, following the classical univariate sequence and modified simplex method. Beer’s law is obeyed in the concentration range of (0.5-12.0 µg.mL-1) with molar absorptivity of 4.9617×104 L.mol-1.cm-1. The
... Show MoreTwo simple, rapid, and useful spectrophotometric methods were suggest or the determination of sulphadimidine sodium (SDMS) with and without using cloud point extraction technique in pure form and pharmaceutical preparation. The first method was based on diazotization of the Sulphdimidine Sodium drug by sodium nitrite at 5 ºC, followed by coupling with α –Naphthol in basic medium to form an orange colored product . The product was stabilized and its absorption was measured at 473 nm. Beer’s law was obeyed in the concentration range of (1-12) μg∙ml-1. Sandell’s sensitivity was 0.03012 μg∙cm-1, the detection limit was 0.0277 μg∙ml-1, and the limit of Quantitation was 0.03605μg
... Show MoreA simple, and rapid spectrophotometric method for the estimation of paracetamol has been developed. The methods is based on diazotisation of 2,4-dichloroaniline followed by a coupling reaction with paracetamol in sodium hydroxide medium. All variables affecting the reaction conditions were carefully studied. Beer's law is obeyed in the concentration range of 4-350 ?gml?1 at 490 nm .The method is successfully employed for the determination of paracetamol in pharmaceutical preparations. No interferes observed in the proposed method. Analytical parameters such as accuracy and precision have been established for the method and evaluated statistically to assess the application of the method.
Two methods have been applied for the spectrophotometric determination of atropine, in
bulk sample and in dosage form. The methods are accurate, simple, rapid, inexpensive and
sensitive. The first method depending on the extraction of the formed ion-pair complex with
bromphenol blue (BPB) as a chromogenic reagent in chloroform, use phthalate buffer of pH
3.0; which showed absorbance maxima at 413 nm against reagent blank. The calibration
graph is linear in the ranges of 0.5-40 µg.mL
-1
with detection limit of 0.363µg.mL
-1
. The
second method depending on the measure of the absorbance maxima of the formed charge-transfer complex with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) at 457 nm against
Amiodarone hydrochloride (AH) has been determined spectrophotometrically Using methyl orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method based on complexation between MO and AH. After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 3. The colored complex formed between AH and the reagent were transferred into separating funnels and extracted using 5.5ml CH2Cl2 and were shaken for (5 minutes). The extracted organic layer was used for preparation of the calibration curves for spectrophotometric measurements of AH at 434nm. The blanks were carried out in exactly the same way throughout the whole procedure.&n
... Show MoreA simple, fast and sensitive spectrophotometric method has been applied for the determination of tetracycline hydrochloride in its pure form and in pharmaceutical preparations. The method based on coupling reaction of the antibiotic with diazotized anthranilic acid to form a stable yellow azo dye which shows a maximum absorption at 419 nm. Uni- and multivariate approaches were followed in optimizing the experimental conditions. Under optimum experimental conditions obtained via multivariate (Central Composite Design), the linearity of the constructed calibration curve was in the range of 0.560 μg.mL-1 with molar absorptivity of 14619 L.mol-1.cm-1 and the value of detection limit was 0.2813μg.mL-1. The capability of the metho
... Show MoreA chemometric method, partial least squares regression (PLS) was applied for the simultaneous determination of piroxicam (PIR), naproxen (NAP), diclofenac sodium (DIC), and mefenamic acid (MEF) in synthetic mixtures and commercial formulations. The proposed method is based on the use of spectrophotometric data coupled with PLS multivariate calibration. The Spectra of drugs were recorded at concentrations in the linear range of 1.0 - 10 μg mL-1 for NAP and from 1.0 - 20 μg mL-1 for PIR, DIC, and MEF. 34 sets of mixtures were used for calibration and 10 sets of mixtures were used for validation in the wavelength range of 200 to 400 nm with the wavelength interval λ = 1 nm in methanol. This method has been used successfully to quant
... Show More