The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six different controllers are applied and compared for BPA in WT: type-1 fuzzy logic controller (T1-FLC), interval type-2 fuzzy logic controller (IT2-FLC), interval type-3 fuzzy logic controller (IT3-FLC), optimal hybrid type-1 fuzzy-PID controller (HT1-FPIDC), optimal hybrid type-2 fuzzy-PID controller (HT2-FPIDC), and optimal hybrid type-3 fuzzy-PID controller (HT3-FPIDC). The comparison between Mamdani and Sugeno fuzzy inference systems (FIS) has been applied to find the best inference system. Genetic Algorithm (GA) and Particle swarm optimization (PSO) are used to find the optimal tuning of PID parameters. The results of the 500-kw horizontal axis wind turbine show that Sugeno FIS has higher stability in output power generation than Mamdani FIS. Also, optimal HT3-FPIDC based on Mamdani FIS with PSO provides 19.74 % lower absolute summation error (ASE) than Sugeno FIS in optimal HT2-FLC with PSO and 39.03 % lower ASE than optimal HT1-FLC based on Sugeno FIS with PSO. Finally, the proposed optimal HT3-FPIDC based on PSO and Mamdani FIS provides the optimal results in terms of consistent output power generation at rated value.
The load shedding scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreThe first studies on shocks and vibrations were carried out at the beginning of the 1930s to improve the behavior of buildings during earthquakes. Vibration tests on aircraft were developed from 1940 to verify the resistance of parts and equipments prior to their first use. Flutter is a well-known example of dynamic aero elasticity, where when oscillation of structure interacted with unsteady aerodynamic forces the flutter will occur. Vibration on any structure without damping means that self-harmonic oscillation will occur, and in most cases the oscillation may start to increase until structural failure. This behavior is very similar to resonance phenomena if only the oscillation is being studied as a vibration case. In vibration suppre
... Show MoreIn latest decades, genetic methods have developed into a potent tool in a number of life-attaching applications. In research looking at demographic genetic diversity, QTL detection, marker-assisted selection, and food traceability, DNA-based technologies like PCR are being employed more and more. These approaches call for extraction procedures that provide efficient nucleic acid extraction and the elimination of PCR inhibitors. The first and most important stage in molecular biology is the extraction of DNA from cells. For a molecular scientist, the high quality and integrity of the isolated DNA as well as the extraction method's ease of use and affordability are crucial factors. The present study was designed to establish a simple, fast
... Show MoreExplainable Artificial Intelligence (XAI) techniques enable transparency and trust in automated visual inspection systems by making black-box machine learning models understandable. While XAI has been widely applied, prior reviews have not addressed the specific demands of industrial and medical inspection tasks. This paper reviews studies applying XAI techniques to visual inspection across industrial and medical domains. A systematic search was conducted in IEEE Xplore, Scopus, PubMed, arXiv, and Web of Science for studies published between 2014 and 2025, with inclusion criteria requiring the application of XAI in inspection tasks using public or domain-specific datasets. From an initial pool of studies, 75 were included and categorized in
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More