The modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensifies in the presence of organic acids, with significant increases in both advancing (θa) and receding (θr) contact angles upon exposure to organic acid at 323 K and 20 MPa. Contrastingly, the application of SiO2 nanoparticles under these conditions results in a marked shift towards hydrophilicity, with θa and θr decreasing substantially, thus indicating an optimal nanoparticle concentration (0.1 wt% SiO2) for effecting the transition from H2-wet to water-wet states. This change in wettability aligns with the known pressure-dependent behavior of contact angles. Moreover, the treatment of organically-aged basalt with 0.1 wt% SiO2 nanofluids at 20 MPa and 323 K enhances the H2 column height significantly, from −424 m to 4340 m, suggesting a reduced risk of H2 migration across the caprock and thereby enhancing both the structural/residual trapping and containment security of H2 within the basaltic formations of Saudi Arabia. This article highlights the crucial role of SiO2 nanofluids in improving the efficacy of H2 storage in basalt, offering a new insight towards the optimization of geological storage solutions for hydrogen, a critical component in the transition to a sustainable energy future.
The present work describes guggul as a novel carrier for some anti-inflammatory drugs. Guggulusomes containing different concentration of guggul with aceclofenac were prepared by sonication method and characterized for vesicle shape, size, size-distribution, pH, viscosity, spread ability, homogeneity, and accelerated stability in-vitro drug permeation through mouse skin. The vesicles exhibited an entrapment efficiency of 93.2 ± 12%, vesicle size of 0.769 ± 3μm and a zeta potential of - 6.21mV. In vitro drug release was analyzed using Franz’s diffusion cells. The cumulative release of the guggulusomes gel (G2) was 75.8% in 18 hrs, which is greater than that all the gel formulation. The stability profile of prepare
... Show MoreThe problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as
... Show MoreStorage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry.
Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Int
... Show MoreIn this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
The study includes building a 3-D geological model, which involves get the Petrophysical properties as (porosity, permeability and water saturation). Effective Porosity, water saturation results from log interpretation process and permeability from special correlation using core data and log data. Clay volume can be calculated by six ways using IP software v3.5 the best way was by using gamma Ray. Also, Water Resistivity, flushed zone saturation and bulk volume analysis determined through geological study. Lithology determined in several ways using M-N matrix Identification, Density-Neutron and Sonic-Neutron cross plots. The cut off values are determined by Using EHC (Equivalent Hydra
High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show MoreCities have witnessed great changes since the planning of the first cities. This is due to the increase in population and problems in services that affect urban security. As such, urban security is directed and affected by the nature of city planning and the types of services. Besides, the kind of services plays an imminent place in providing urban security at all levels. Other factors that influence urban security can be limited to the increase of population, economic and social changes. This leads to losing urban control. This study will explore the historical chronology to identify weaknesses in urban planning since its dawn and reaching solutions to protect urban security. The importance of the research lies in achieving urban securi
... Show MoreCities have witnessed great changes since the planning of the first cities. This is due to the increase in population and problems in services which affect urban security. As such, urban security is directed and affected by the nature of city planning and the types of services. Besides, the kind of services plays an imminent place in providing urban security at all levels. Other factors that influence urban security can be limited to the increase of population, economic and social changes. This leads to losing urban control. This study will explore the historical chronology to identify weaknesses in urban planning since its dawn and reaching solutions to protect urban security. The importance of the research lies in achieving urban secur
... Show More