The modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensifies in the presence of organic acids, with significant increases in both advancing (θa) and receding (θr) contact angles upon exposure to organic acid at 323 K and 20 MPa. Contrastingly, the application of SiO2 nanoparticles under these conditions results in a marked shift towards hydrophilicity, with θa and θr decreasing substantially, thus indicating an optimal nanoparticle concentration (0.1 wt% SiO2) for effecting the transition from H2-wet to water-wet states. This change in wettability aligns with the known pressure-dependent behavior of contact angles. Moreover, the treatment of organically-aged basalt with 0.1 wt% SiO2 nanofluids at 20 MPa and 323 K enhances the H2 column height significantly, from −424 m to 4340 m, suggesting a reduced risk of H2 migration across the caprock and thereby enhancing both the structural/residual trapping and containment security of H2 within the basaltic formations of Saudi Arabia. This article highlights the crucial role of SiO2 nanofluids in improving the efficacy of H2 storage in basalt, offering a new insight towards the optimization of geological storage solutions for hydrogen, a critical component in the transition to a sustainable energy future.
The main objective of resources management is to supply and support the site operation with necessary resources in a way to achieve the required timing in handing over the work as well as to achieve the cost-realism within the budget estimated. The research aims to know the advantage of using GIS in management of resources as one of the new tools that keep pace with the evolution in various countries around the world also collect the vast amount of spatial data resources in one environment easily to handled and accessed quickly and this help to make the right decision regarding management of resources in various construction projects. The process of using GIS in the management and identification of resources is of extreme importance in t
... Show MoreThis study was conducted with the aim to extract and purify a polyphenolic compound “ Resveratrol†from the skin of black grapes Vitis vinifera cultivated in Iraq. The purified resveratrol is obtained after ethanolic extraction with 80% v/v solution for fresh grape skin, followed by acid hydrolysis with 10% HCl solution then the aglycon moiety was taken with organic solvent
( chloroform). Using silica gel G60 packed glass column chromatography with mobile phase benzene: methanol: acetic acid 20:4:1 a
... Show MoreTo ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib
... Show MoreWireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicio
... Show MoreIn this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show More