Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy. Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when appropriate, was used to analyze the relationship between the variables. Results: there was a significant reduction of RI mean, PI mean, and S/D ratio among women with different types of abnormal pregnancy compared with the control group. RI and PI mean levels were significantly lower in women with hydatidiform mole and significantly higher in women with missed miscarriage. Lower left S/D mean level was significantly associated with hydatidiform mole and upper left S/D level was associated significantly with control women. For prediction of missed miscarriage; right and left uterine artery RI shows a sensitivity of 80%, 73.3%, a specificity of 68%, 71.1%, and the highest AUC was 0.78 for both.For prediction of molar pregnancy, right and left uterine artery RI showed a sensitivity of 63% for both, a specificity of 54.4%, 60%, and the highest AUC was 0.58, 0.61 respectively. Conclusions: Uterine artery Doppler ultrasonography at 6-12 weeks of gestation is predictive for early pregnancy complications such as missed abortion, hydatidiform mole, and blighted ovum.
Objective: To assess the impact of pregnant women’s depression state upon their pregnancy outcome Methodology: A descriptive purposive study was used to assess the impact of pregnant women’s depression state on their pregnancy outcomes. The study was conducted from (22nd \ September \ 2020 to 15th \ February \ 2021). A non-probability sample (purposive sample) was selected from 100 women. Data were collected through an interview with the mother in the counseling clinic, during the third trimester of pregnancy, as well as after childbirth in the labour wards to assess the outcome of pregnancy. Data were analyzed through descriptive statistics (frequency and percentages). Results: The most important thing observed in this study was the ne
... Show MoreBackground: Rheumatoid arthritis (RA) is an autoimmune disorder that involves autoantibodies attacking and weakening joints. RA is characterized by leukocyte (Monocyte, Lymphocyte mast cell .etc) infiltrations into the synovial compartment leading to inflammation in the synovial membrane. Synovitis leads to the release of pro-inflammatory cytokines, matrix metalloproteinases, chemokines, complement proteins, and growth factors. Objective: The current study pointed to verify the diagnostic values of interleukin -17 A and interleukin -18 in Rheumatoid arthritis (RA) patients and the effect of treatment thereon. Study subjects and methods: A total of 88 samples with RA were selected from the health clinics of AL-Yarmouk
... Show MoreObjective: To assess the impact of anxiety and stress during pregnancy upon neonatal outcome Methodology: A descriptive purposive study was used to assess the impact of anxiety and stress during pregnancy upon neonatal outcome. The study was conducted from (22nd \ September \ 2020 to 15th \ February \ 2021). A non-probability sample (purposive sample) was selected from 100 women. Data were collected through an interview with the mother in the counseling clinic, during the third trimester of pregnancy, as well as after childbirth in the labour wards to assess the outcome of pregnancy. Data were analyzed through descriptive statistics (frequency and percentages). Results: The most important thing observed in this study was the n
... Show MoreThe present study investigates the application of a combined electrocoagulation-electrooxidation (EC-EO) process for the treatment of wastewater generated from Al-Dewaniya petroleum refinery plant in Iraq. The EC-EO process was examined in terms of its ability to simultaneously produce coagulant and oxidant agents by using a parallel plate configuration system composed of stainless steel plates as cathode and pair of aluminum and graphite plates as anode at two different current concentrations (1.92A/l and 0.96A/l). The results showed that the best conditions for treatment of Al-Dewaniya petroleum refinery wastewater using the combined approach were current concentration of (0.96A/l), current density
The stratigraphic sequence of Cenomanian-Early Turonian is composed of Ahmadi, Rumaila, and Mishrif formations in the Rifai, Noor and Halfaya Oil Fields within the Mesopotamian Zone of Iraq, which is bounded at top and bottom by unconformity surfaces. The microfacies analysis of the study wells assisted the recognition of five main environments (open marine, basinal, shallow open marine, Rudist biostrome, and lagoon); these microfacies were indicative of a normal lateral change facies from shallow water facies to deeper water and open marine sediments.
Ahmadi Formation (Early Cenomanian) is characterized by open marine sediments during the transgressive conditions, and would be
... Show MoreRecommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More