Objective: to assess the predictive value of Doppler imaging of the uterine artery in the identification of early intrauterine abnormal pregnancy as compared to a normal intrauterine pregnancy. Subjects and methods: one hundred and twenty pregnant ladies, at their 6-12 weeks of gestation, with a singleton pregnancy were included in this population-based case-control study. Thirty women with a missed miscarriage, 30 with hydatidiform mole, 30 with a blighted ovum, and 30 as a control group, without risk factors, underwent Doppler interrogation of the uterine arteries. Resistive index (RI), pulsatility index (PI), and the systolic/diastolic ratio (S/D) were measured for both sides. The t-test, or ANOVA test when appropriate, was used to analyze the relationship between the variables. Results: there was a significant reduction of RI mean, PI mean, and S/D ratio among women with different types of abnormal pregnancy compared with the control group. RI and PI mean levels were significantly lower in women with hydatidiform mole and significantly higher in women with missed miscarriage. Lower left S/D mean level was significantly associated with hydatidiform mole and upper left S/D level was associated significantly with control women. For prediction of missed miscarriage; right and left uterine artery RI shows a sensitivity of 80%, 73.3%, a specificity of 68%, 71.1%, and the highest AUC was 0.78 for both.For prediction of molar pregnancy, right and left uterine artery RI showed a sensitivity of 63% for both, a specificity of 54.4%, 60%, and the highest AUC was 0.58, 0.61 respectively. Conclusions: Uterine artery Doppler ultrasonography at 6-12 weeks of gestation is predictive for early pregnancy complications such as missed abortion, hydatidiform mole, and blighted ovum.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreBackground: Diabetes mellitus a major factor that has adverse effects on the vascular system and the heart. It causes an increase in cardiac muscle thickness, resulting in decreased compliance and increased peripheral arterial stiffness. This study aims to assess the left ventricular mass (LVM) and left ventricular hemodynamic changes in diabetic patients measured by Doppler echocardiography. Patients and Methods: The study included 50 diabetic patients ranging in age between 25 and 80 years, (mean age: 54.1 ± 15.10, 19 males, 31 females) and 50 healthy subjects, aged 25 to 80 years (mean age: 48.52 ± 14.45, 11 males, 39 females). Doppler echocardiography was used to assess left ventricular function. The measurements included
... Show MoreBackground: Temporomandibular joint disorder (TMD) is a general term that describe a wide variety of conditions that include myogenic pain, internalderangement, arthritic problem, ankylosis of the joint and growth disorders. The aims of study was to evaluate the value of 3 Tesla magnetic resonance imaging in assessment of articular disc position and configuration in patients with temporomandibular joint disorders and to evaluate the correlations of these MRI findings with the clinical signs and symptoms. Materials and methods: A total forty six (30 study and 16 control) participants aged between18 and 49 years, were examined according to Helkimo anamnestic index (questionnaire for anamnesis) and clinical dysfunction index scoring criteria
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreBackground: Conventional MR imaging is essential for diagnosis and evaluation of the posterior fossa tumors Objectives: To assess the value of diffusion weighted imaging and apparent diffusion coefficient in making distinction between different histological types of posterior fossa tumors.
Type of the study: Cross-sectional study.
Methods: Brain MRI and DWI assessed 19 patients (12 female and 7 male) with MRI diagnosis of posterior fossa tumors. absolute ADC values of contrast -enhancing solid tumor region and ADC ratio of solid tumor to ADC of normal -appearing deep White matter were compared with histological diagnosis postoperatively .The m
... Show MoreBackground: The post-operative acute abdominal complication is one of the most difficult clinical problems facing the surgeon, and it represents a unique challenge for him not only because of the difficulty in making a precise diagnosis but also in the decision for further management . Objective: discuss the post-operative acute abdominal complications requiring re-interventionType of the study: Cross sectional study. Methods : Patients with early post-operative Acute Abdominal complications ( within 30 days from the initial operation ) who required re-intervention were studied prospectively Results :The study included 82 patients 47 of them were females, their age ranging 7-87,Different types of the initial operation were reported,51 %
... Show MoreA study that collected 240 samples and divided into two groups: the first 120 samples were for diabetics and the second 120 samples were for healthy people, and each group included (90, 20.10) samples from the mouth, urine and vagina respectively, The results showed positive (28.67, 4.00, 1.67) isolates of Candida. In the mouth, urine and vagina, respectively, of diabetic patients compared to (9.33, 2.33, 5.00) positive isolates in the mouth, urine and vagina, respectively, in the healthy. The rate of positive isolates in women was high in women with diabetes and healthy, and it reached 25.33 and 9.00 isolates, respectively, compared with the rate of isolates in men with Candida disease for diabetic patients and healthy people 14.67 and 2.0
... Show More