In this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are calculated using transmission spectra according to UV-visible absorption spectra. The optical band energy gap is measured using as-deposited Sb2Se3 thin films at room temperature and annealed Sb2Se3 thin films at 473K and 573 K.
In this paper, we used two monomers, 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) and m,m'-diaminobenzophenone (m, m’-DABP), to produce polyamide acid and then converted it to polyimide (PI). The effects of phosphoric acid (H3PO4) molarity (1, 2, and 3 M) on the structural, thermal, mechanical, and electrical characteristics of the polyimides/polyaniline (PI/PANI) nanocomposites were studied. Two sharp reflection peaks were developed by the addition of PANI to PI. When 3 M H3PO4 is added, the crystalline sharp peak loses some of its intensity. The complex formation of PI/PANI-H3PO4 was confi
... Show MoreThin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
in this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
Chalcopyrite thin films ternary Silver Indium Diselenide AgInSe2 (AIS) pure and Aluminum Al doped with ratio 0.03 was prepared using thermal evaporation with a vacuum of 7*10-6 torr on glass with (400) nm thickness for study the structural and optical properties. X-ray diffraction was used to show the inflance of Al ratio dopant on structural properties. X-ray diffraction show that thin films AIS pure, Al doped at RT and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112). raise the crystallinity degree. AFM used to study the effect of Al on surfaces roughness and Grain Size Optical properties such as the optical band gap, absorption coefficient, Extinction coefficient, refractive ind
... Show Morethin films of se:2.5% as were deposited on a glass substates by thermal coevaporation techniqi=ue under high vacuum at different thikness
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
The aim of the present research is concerned with study the effect of UV radiation on the optical properties at wavelengths 254, 365 nm of pure PC and anthracene doping PC films prepared using the cast method for different doping ratio 10-60 mL. Films of pure PC and anthracene doping PC were aged under UV radiation for periods of up to 360 h. It found that the effect of UV radiation at wavelength 254 nm on the optical properties is great than the effect of UV radiation at wavelength 365 nm. Also, it found that the optical energy gap of pure PC and anthracene doping PC films is stable against radiation.
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati