Preferred Language
Articles
/
-BdmWZIBVTCNdQwCbqxU
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.

Crossref
View Publication
Publication Date
Sun May 15 2022
Journal Name
Revistabionatura
Synthesis and characterization of azo liquid crystal compounds based on 5H-Thiazolo [3,4-b][1,3,4] thiadiazole unit
...Show More Authors

A calamitic symmetric liquid crystalline consisting of an azo group containing 5H-Thiazolo[3,4-b][1,3,4]thiadiazole moiety compound[III] was synthesized via sequence reactions starting from reaction terephthaldehyde with mercaptoacetic acid and thiosemicarbazide in the presence of concentrated sulfuric acid to synthesized 5,5'-(1,4-phenylene)bis(5Hthiazolo[4,3-b][1,3,4]thiadiazol-2-amine)[I] then the azo compound [II] synthesized by coupling between diazonium salt of the compound [I] with phenol at (0-4) ̊C., after that the compound [III] was synthesized by the reaction of the compound [II] with methyl bromide in alkaline media. The compounds are characterized by melting points, FTIR and 1HNMR spectroscopy. The mesomorphic behavior was stu

... Show More
Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
...Show More Authors
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Estimation Pore and Fracture Pressure Based on Log Data; Case Study: Mishrif Formation/Buzurgan Oilfield at Iraq
...Show More Authors

Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Digital Image Authentication Algorithm Based on Fragile Invisible Watermark and MD-5 Function in the DWT Domain
...Show More Authors

Using watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they a

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 02 2017
Journal Name
Iraqi Journal Of Laser
Enhancement the Sensitivity of Humidity Sensor Based on an Agarose Coating Transmission-Type Photonic Crystal Fiber Interferometer
...Show More Authors

Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
The Vertical variations of Atmospheric Methane (CH4) concentrations over selected cities in Iraq based on AIRS data
...Show More Authors

The Atmospheric Infrared Sounder (AIRS) on EOS/Aqua satellite provides diverse measurements of Methane (CH4) distribution at different pressure levels in the Earth's atmosphere. The focus of this research is to analyze the vertical variations of (CH4) volume mixing ratio (VMR) time-series data at four Standard pressure levels SPL (925, 850, 600, and 300 hPa) in the troposphere above six cities in Iraq from January 2003 to September 2016. The analysis results of monthly average CH4VMR time-series data show a significant increase between 2003 and 2016, especially from 2009 to 2016; the minimum values of CH4 were in 2003 while the maximum values were in 2016. The vertical distribution of CH4<

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
International Journal Of Intelligent Engineering And Systems
Automatic Computer Aided Diagnostic for COVID-19 Based on Chest X-Ray Image and Particle Swarm Intelligence
...Show More Authors

View Publication
Scopus (24)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Biocatalysis And Agricultural Biotechnology
Determination of Diazinon in fruit samples using electrochemical sensor based on carbon nanotubes modified carbon paste electrode
...Show More Authors

View Publication
Scopus (52)
Crossref (47)
Scopus Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (13)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indian Journal Of Ecology
Classification of al-hammar marshes satellite images in Iraq using artificial neural network based on coding representation
...Show More Authors

Scopus (2)
Scopus