Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.
The work demonstrates the effect of cold atmospheric plasma (CAP) on adult female rats suffering from osteoporosis, the used plasma was generated by a floating electrode-dielectric barrier discharge system with an electrode diameter of 3 cm. The output power was from (12-20) watts. The effect of non-thermal plasma was observed on rats with various exposure times of 20, 30, and 40 sec. It was noted that the blood calcium percentage of animals exposed to cold plasma increased, as well as an increase in the level of vitamin D3 at the same time, it is noted that there is no effect on parathyroid hormone level. For the thyroid gland, it is noticed an increase in the level of T3, and T4 hormones in the blood during the period of induction for
... Show MoreHigh temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.
The purpose of this paper is to depict the effect of adding a hydraulic accumulator to a hydraulic system. The experimental work includes using measuring devices with interface to measure the pressure and the vibration of the system directly by computer so as to show the effect of accumulator graphically for real conditions, also the effects of hydraulic accumulator for different applications
have been tested. A simulation analysis of the hydraulic control system using MATLAB.R2010b to study was made to study the stability of the system depending on the transfer function, to estimate the effect of adding the accumulator on stability of the system. A physical simulation test was made for the hydraulic system using MATLAB to show the ef
With wireless sensor network (WSN) wide applications in popularity, securing its data becomes a requirement. This can be accomplished by encrypting sensor node data. In this paper a new an efficient symmetric cryptographic algorithm is presented. This algorithm is called wireless sensor network wavelet curve ciphering system (WSN-WCCS). The algorithm idea based on discrete wavelet transformation to generate keys for each node in WSN. It implements on hierarchical clustering WSN using LEACH protocol. Python programming language version 2.7 was used to create the simulator of WSN framework and implement a WSN-WCCS algorithm. The simulation result of the proposed WSN-WCCS with other symmetric algorithms has show
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreAl-Dalmaj marsh and the near surrounding area is a very promising area for energy resources, tourism, agricultural and industrial activities. Over the past century, the Al-Dalmaje marsh and near surroundings area endrous from a number of changes. The current study highlights the spatial and temporal changes detection in land cover for Al-Dalmaj marsh and near surroundings area using different analyses methods the supervised maximum likelihood classification method, the Normalized Difference Vegetation Index (NDVI), Geographic Information Systems(GIS), and Remote Sensing (RS). Techniques spectral indices were used in this study to determine the change of wetlands and drylands area and of other land classes, th
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreIn recent years, the performance of Spatial Data Infrastructures for governments and companies is a task that has gained ample attention. Different categories of geospatial data such as digital maps, coordinates, web maps, aerial and satellite images, etc., are required to realize the geospatial data components of Spatial Data Infrastructures. In general, there are two distinct types of geospatial data sources exist over the Internet: formal and informal data sources. Despite the growth of informal geospatial data sources, the integration between different free sources is not being achieved effectively. The adoption of this task can be considered the main advantage of this research. This article addresses the research question of ho
... Show MoreFractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit
... Show MoreBackground: The risk of antibiotics resistance (AR) increases due to excessive of antibiotics either by health care provider or by the patients.
Objective: The assessment of the self-medication Practice of over the counter drugs and other prescription drugs and its associated risk factor.
Subjects and Methods: Study design: A descriptive study was conducted from “20th December 2019 to 08th January 2021”. A pre validated and structured questionnaire in English and Urdu language was created to avoid language barrier including personal detail, reasons and source and knowledge about over the counter drugs and Antibiotics. Sample of the study was randomly selected.
... Show More