Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.
The main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im
... Show MoreAgent technology has a widespread usage in most of computerized systems. In this paper agent technology has been applied to monitor wear test for an aluminium silicon alloy which is used in automotive parts and gears of light loads. In addition to wear test monitoring، porosity effect on
wear resistance has been investigated. To get a controlled amount of porosity, the specimens have
been made by powder metallurgy process with various pressures (100, 200 and 600) MPa. The aim of
this investigation is a proactive step to avoid the failure occurrence by the porosity.
A dry wear tests have been achieved by subjecting three reciprocated loads (1000, 1500 and 2000)g
for three periods (10, 45 and 90)min. The weight difference a
Iraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreIn recent years, the positioning applications of Internet-of-Things (IoT) based systems have grown increasingly popular, and are found to be useful in tracking the daily activities of children, the elderly and vehicle tracking. It can be argued that the data obtained from GPS based systems may contain error, hence taking these factors into account, the proposed method for this study is based on the application of IoT-based positioning and the replacement of using IoT instead of GPS. This cannot, however, be a reason for not using the GPS, and in order to enhance the reliability, a parallel combination of the modern system and traditional methods simultaneously can be applied. Although GPS signals can only be accessed in open spaces, GP
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More
Buildings such as malls, offices, airports and hospitals nowadays have become very complicated which increases the need for a solution that helps people to find their locations in these buildings. GPS or cell signals are commonly used for positioning in an outdoor environment and are not accurate in indoor environment. Smartphones are becoming a common presence in our daily life, also the existing infrastructure, the Wi-Fi access points, which is commonly available in most buildings, has motivated this work to build hybrid mechanism that combines the APs fingerprint together with smartphone barometer sensor readings, to accurately determine the user position inside building floor relative to well-known lan
... Show MoreA Multiple System Biometric System Based on ECG Data
Abstract
Robust controller design requires a proper definition of uncertainty bounds. These uncertainty bounds are commonly selected randomly and conservatively for certain stability, without regard for controller performance. This issue becomes critically important for multivariable systems with high nonlinearities, as in Active Magnetic Bearings (AMB) System. Flexibility and advanced learning abilities of intelligent techniques make them appealing for uncertainty estimation. The aim of this paper is to describe the development of robust H2/H∞ controller for AMB based on intelligent estimation of uncertainty bounds using Adaptive Neuro Fuzzy Inference System (ANFIS). Simulatio
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreThe efforts in designing and developing lightweight cryptography (LWC) started a decade ago. Many scholarly studies in literature report the enhancement of conventional cryptographic algorithms and the development of new algorithms. This significant number of studies resulted in the rise of many review studies on LWC in IoT. Due to the vast number of review studies on LWC in IoT, it is not known what the studies cover and how extensive the review studies are. Therefore, this article aimed to bridge the gap in the review studies by conducting a systematic scoping study. It analyzed the existing review articles on LWC in IoT to discover the extensiveness of the reviews and the topics covered. The results of the study suggested that many re
... Show More