Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.
This paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreRecent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreDoppler broadening of the 511 keV positron annihilation ??? ? was used to estimate the concentration of defects ?? different deformation levels of pure alnminum samples. These samples were compressed at room temperature to 15, 22, 28, 38,40, and 75 % thickness reduction. The two-state ^sitron-trapping model has been employed. 'I he s and w lineshape parameters were measured using high-resolution gamma spectrometer with high pure germanium detector of 2.1 keV resolution at 1.33 MeV of 60Co. The change of defects concentration (Co) with the deformation level (e) is found to obey an empirical formula of the form Cd - A £ B where A and ? are positive constants that depend mainly on the deformation procedure and the temperature at which the def
... Show MoreWater Quality Index (WQI) as a tool to assess the water quality status provides advice related to the use of water quality monitoring data and it is a way for combining the complex water quality data into a single value or single statement.The present study was conducted on Al- Hilla river in the middle of Iraq from August 2012 to July 2013 at five selected stations in the river, from Al- Musaib city to Al- Hashimya at the south of Hilla to determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation (IWQI).This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management, and decision making. According to th
... Show MoreMonitoring and analysing of the vertical deformations or the settlements of the structures is one of the main research fields in geodetic applications, which is considered a precise periodic measurement, made at different epochs to investigate these deformations on heavy structures.
In this research, the deformation measurements were carried out on one of Baghdad University buildings,” Building of Computers Department” of dimensions (70.0 * 81.3 m.). Due to some cracks observed in their walls, it was necessary to monitor the vertical displacement of this building at some particular monitoring points by constructing a vertical network and measured in different epochs. The first epoch (zero epoch) was carried out in April 2006, the
Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreIn this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show More